遼寧組學(xué)實(shí)驗(yàn)數(shù)據(jù)科學(xué)歡迎咨詢

來(lái)源: 發(fā)布時(shí)間:2021-10-24

    PCA主成分分析測(cè)序技術(shù)的發(fā)展使得現(xiàn)在能夠從宏觀角度分析基因表達(dá),但是也在一定程度上增加了數(shù)據(jù)分析難度。許多基因之間可能存在相關(guān)性,如果分別對(duì)每個(gè)基因進(jìn)行分析,分析往往是孤立的,盲目減少指標(biāo)會(huì)損失很多有用的信息。PCA(PrincipalComponentAnalysis),即主成分分析方法,是一種使用*****的數(shù)據(jù)降維算法。一般可應(yīng)用的研究方向有:一組基因在多個(gè)分組中的差異情況,多個(gè)基因在該樣本中的差異情況?;驹鞵CA的主要思想是將n維特征映射到k維上,這k維是全新的正交特征也被稱為主成分,是在原有n維特征的基礎(chǔ)上重新構(gòu)造出來(lái)的k維特征。PCA的工作就是從原始的空間中順序地找一組相互正交的坐標(biāo)軸,新的坐標(biāo)軸的選擇與數(shù)據(jù)本身是密切相關(guān)的。其中,**個(gè)新坐標(biāo)軸選擇是原始數(shù)據(jù)中方差**的方向,第二個(gè)新坐標(biāo)軸選取是與**個(gè)坐標(biāo)軸正交的平面中使得方差**的,第三個(gè)軸是與第1,2個(gè)軸正交的平面中方差**的。依次類推,可以得到n個(gè)這樣的坐標(biāo)軸。通過(guò)這種方式獲得的新的坐標(biāo)軸,我們發(fā)現(xiàn),大部分方差都包含在前面k個(gè)坐標(biāo)軸中,后面的坐標(biāo)軸所含的方差幾乎為0。于是,我們可以忽略余下的坐標(biāo)軸,只保留前面k個(gè)含有絕大部分方差的坐標(biāo)軸。事實(shí)上。 參考國(guó)內(nèi)外數(shù)據(jù)資源,根據(jù)需求制定構(gòu)建方案。遼寧組學(xué)實(shí)驗(yàn)數(shù)據(jù)科學(xué)歡迎咨詢

    GSVA(基因集變異分析,反映了樣本和感興趣的通路之間的聯(lián)系):GSVA全名Genesetvariationanalysis(基因集變異分析),是一種非參數(shù),無(wú)監(jiān)督的算法。與GSEA不同,GSVA不需要預(yù)先對(duì)樣本進(jìn)行分組,可以計(jì)算每個(gè)樣本中特定基因集的富集分?jǐn)?shù)。換而言之,GSVA轉(zhuǎn)化了基因表達(dá)數(shù)據(jù),從單個(gè)基因作為特征的表達(dá)矩陣,轉(zhuǎn)化為特定基因集作為特征的表達(dá)矩陣。GSVA對(duì)基因富集結(jié)果進(jìn)行了量化,可以更方便地進(jìn)行后續(xù)統(tǒng)計(jì)分析。如果用limma包做差異表達(dá)分析可以尋找樣本間差異表達(dá)的基因,同樣地,使用limma包對(duì)GSVA的結(jié)果(依然是一個(gè)矩陣)做同樣的分析,則可以尋找樣本間有***差異的基因集。這些“差異表達(dá)”的基因集,相對(duì)于基因而言,更加具有生物學(xué)意義,更具有可解釋性,可以進(jìn)一步用于**subtype的分型等等與生物學(xué)意義結(jié)合密切的探究。 遼寧組學(xué)實(shí)驗(yàn)數(shù)據(jù)科學(xué)歡迎咨詢承擔(dān)各類項(xiàng)目超過(guò)400余項(xiàng)。

    不同分組的全基因組拷貝數(shù)變化的比較:**初目的:不同分組的拷貝數(shù)變異在染色體水平和染色體臂水平的展示和比較。應(yīng)用:不同分組的全基因組拷貝數(shù)變化的比較,展示genome-wideDNAcopy-numberprofiles。不同染色體臂的變異與臨床表型息息相關(guān)。輸入數(shù)據(jù)格式:一個(gè)表征每個(gè)樣本的染色體變異(gain,balance,loss)的數(shù)值矩陣和樣本分組信息?;蛘呖截悢?shù)的原始結(jié)果,可處理成所需矩陣。參考文獻(xiàn):(2)::本文計(jì)算出病人的拷貝數(shù)變異情況后,按照之前病人的分組比較了不同分組的染色體變異的異同,找到特定的染色體變異模式。確定了各組的特征,如lmonosomy2inPFB2,monosomy8inPFB3,monosomy3inPFB1,andgainof1qinPFB1.。

    RoastROAST是一種差異表達(dá)分析方法,有助于提高統(tǒng)計(jì)能力、組織和解釋結(jié)果以及在不同實(shí)驗(yàn)中的關(guān)聯(lián)表達(dá)模式,一般適用于microarray、RNA-seq的表達(dá)矩陣,用limma給全部基因做差異表達(dá)分析,不需要篩差異表達(dá)基因?;驹恚篟OAST是一種假設(shè)驅(qū)動(dòng)的測(cè)試,對(duì)結(jié)果基因集做富集分析,富集分析考慮基因集中基因的方向性(上調(diào)或下調(diào))和強(qiáng)度(log2倍變化),判斷上/下調(diào)基因是否***富于集目標(biāo)基因集;ROAST使用rotation,一種MonteCarlotechnology的多元回歸方法,適用于樣本數(shù)量較少的情況;roast檢驗(yàn)一個(gè)geneset,對(duì)于復(fù)雜矩陣,使用mroast做multipleroasttests。富集分析結(jié)果用barcodeplot展示,使上/下調(diào)基因在目標(biāo)基因集中的分布可視化。數(shù)據(jù)要求:表達(dá)矩陣。 協(xié)助構(gòu)建各類科研、臨床數(shù)據(jù)庫(kù)。

    GSEA全名為GeneSetEnrichmentAnalysis(基因集富集分析)。用以分析特定基因集(如關(guān)注的GO條目或KEGGPathway)在兩個(gè)生物學(xué)狀態(tài)(如**與對(duì)照,高齡與低齡)中是否存在差異。能夠研究基因變化的生物學(xué)意義。SubtypeGSEA是在GSEA的基礎(chǔ)上對(duì)不同亞型樣本中重要通路的富集情況進(jìn)行組間比較,能直觀比較不同亞型中相同通路富集情況?;驹鞧SEA主要分為基因集進(jìn)行排序、計(jì)算富集分?jǐn)?shù)(EnrichmentScore,ES)、估計(jì)富集分?jǐn)?shù)的***性水平并進(jìn)行多重假設(shè)檢驗(yàn)三個(gè)步驟。**步對(duì)輸入的所有基因集L進(jìn)行排序,通常來(lái)說(shuō)初始輸入的基因數(shù)據(jù)為表達(dá)矩陣,排序的過(guò)程相當(dāng)于特定兩組中(case-control、upper-lower等等)基因差異表達(dá)分析的過(guò)程。根據(jù)所有基因在兩組樣本的差異度量不同(共有六種差異度量,默認(rèn)是signal2noise,GSEA官網(wǎng)有提供公式,也可以選擇較為普遍的foldchange),對(duì)基因進(jìn)行排序,并且Z-score標(biāo)準(zhǔn)化。第二步是GSEA的**步驟,通過(guò)分析預(yù)先定義基因集S在**步獲得的基因序列上的分布計(jì)算富集指數(shù)EnrichmentScore,并繪制分布趨勢(shì)圖Enrichmentplot。每個(gè)基因在基因集S的EnrichmentScore取決于這個(gè)基因是否屬于基因集S及其差異度量(如foldchange)。 長(zhǎng)期與交大、復(fù)旦、中科院、南大、藥科大等實(shí)驗(yàn)室合作。遼寧組學(xué)實(shí)驗(yàn)數(shù)據(jù)科學(xué)歡迎咨詢

構(gòu)建新的臨床預(yù)測(cè)模型。遼寧組學(xué)實(shí)驗(yàn)數(shù)據(jù)科學(xué)歡迎咨詢

    GSEA數(shù)據(jù)要求1、通常為表達(dá)譜芯片或測(cè)序數(shù)據(jù)(已經(jīng)過(guò)預(yù)處理),也可以是其他形式可排序的基因數(shù)據(jù)。2、具有已知生物學(xué)意義(GO、Pathway、**特征基因集等)的基因集。下游分析:得到GSEA結(jié)果之后的分析有:1.基因注釋:1、繪制基因集富集趨勢(shì)圖(Enrichmentplot)橫坐標(biāo):按差異表達(dá)差異排序的基因序列。數(shù)值越?。ㄆ蜃蠖耍┑幕?*在shICAM-1組中有越高倍數(shù)的差異表達(dá),數(shù)值越小(偏向右端)的基因在對(duì)照組中有越高倍數(shù)的差異表達(dá)??v坐標(biāo):上方的縱坐標(biāo)為富集打分ES,ES是一個(gè)動(dòng)態(tài)的值,沿著基因序列,找到條目中的基因則增加評(píng)分,否則減少評(píng)分。通常用偏離0**遠(yuǎn)的值作為**終富集打分。下方的縱坐標(biāo)**基因表達(dá)與表型的關(guān)聯(lián),***值越大**關(guān)聯(lián)越強(qiáng),數(shù)值大于0**正相關(guān),小于0則**負(fù)相關(guān)。 遼寧組學(xué)實(shí)驗(yàn)數(shù)據(jù)科學(xué)歡迎咨詢