湖北公共數(shù)據(jù)庫挖掘數(shù)據(jù)科學(xué)經(jīng)驗(yàn)豐富

來源: 發(fā)布時(shí)間:2021-08-27

    GeneBodyProfile(對(duì)比不同的樣品在某一區(qū)域的信號(hào)特征,不**于ChIP-seq、DNase-seq、ATAC-seq數(shù)據(jù)):GeneBodyProfile表觀遺傳修飾和對(duì)基因表達(dá)、細(xì)胞發(fā)育等過程有著深遠(yuǎn)的影響,但相關(guān)的研究還未完善。通過對(duì)比不同的樣品在某一區(qū)域的信號(hào)特征,了解不同情況下該基因的表觀遺傳情況,幫助更好的了解其發(fā)***展過程。一般應(yīng)用場(chǎng)景:觀察相關(guān)基因轉(zhuǎn)錄起始位點(diǎn)(TSS)、轉(zhuǎn)錄終止位點(diǎn)(TTS)、genebody以及兩側(cè)信號(hào)特征;觀察某一功能區(qū)域(CpGi、TSS、TTS、peaksummits或enhancer區(qū))及其兩側(cè)信號(hào)特征。數(shù)據(jù)要求:ChIP-seq、DNase-seq或ATAC-seq數(shù)據(jù)。下游分析:基于展示的基因或功能情況1.補(bǔ)充展示部分的已有相關(guān)研究2.解釋展示部分對(duì)研究課題的意義。 云生物數(shù)據(jù)分析需要多久?湖北公共數(shù)據(jù)庫挖掘數(shù)據(jù)科學(xué)經(jīng)驗(yàn)豐富

棒棒糖圖是直觀顯示蛋白質(zhì)結(jié)構(gòu)上的突變點(diǎn)**簡(jiǎn)單且有效的方式。許多致*基因具有比任何其他基因座更頻繁突變的優(yōu)先位點(diǎn)。這些位點(diǎn)被認(rèn)為是突變熱點(diǎn),棒棒糖圖可以用于顯示突變熱點(diǎn)以及其他突變位點(diǎn)。并可以對(duì)比不同**/亞型的突變位點(diǎn)。

基本原理

將蛋白質(zhì)結(jié)構(gòu)根據(jù)氨基酸順序繪制為長(zhǎng)條形,以不同色塊標(biāo)注不同結(jié)構(gòu)域,在基因突變導(dǎo)致氨基酸改變的位置標(biāo)注棒棒糖,并在棒棒糖圓球標(biāo)注位點(diǎn)的突變頻數(shù)以及突變位點(diǎn)。

數(shù)據(jù)要求

基因突變或者蛋白質(zhì)突變數(shù)據(jù)


下游分析

1、突變位點(diǎn)靶向藥物分析

2、驅(qū)動(dòng)基因突變分析 湖北公共數(shù)據(jù)庫挖掘數(shù)據(jù)科學(xué)經(jīng)驗(yàn)豐富文稿投稿2個(gè)月online 發(fā)表。

    術(shù)語解釋:互斥性(mutuallyexclusive):一組基因中只有一個(gè)在一種**中發(fā)生改變,這種現(xiàn)象被稱為互斥性。共現(xiàn)性(co-occurrence):不同途徑功能的基因突變可能發(fā)生在同一**中,這種現(xiàn)象被稱為共現(xiàn)性。數(shù)據(jù)要求:基因突變數(shù)據(jù)下游分析:對(duì)于存在共現(xiàn)性或互斥性的基因?qū)?基因集基因集的功能分析基因集相關(guān)的生存分析基于基因集的潛在靶向藥物分析文獻(xiàn)一:Functionalgenomiclandscapeofacutemyeloidleukaemia急性髓性白血病的功能基因組圖(于2018年10月發(fā)表在Nature.,影響因子)文獻(xiàn)中使用DISCOVER40方法評(píng)估531例白血病患者中**常見的復(fù)發(fā)性突變的共現(xiàn)性或排他性,并用點(diǎn)圖展示。文獻(xiàn)二:ALPK1hotspotmutationasadriverofhumanspiradenomaandspiradenocarcinoma文獻(xiàn)中利用DISCOVER共現(xiàn)性質(zhì)和互斥性分析工具對(duì)ALPK1和CYLD的互斥性進(jìn)行了評(píng)價(jià)。

術(shù)語解讀

數(shù)據(jù)降維:

降維就是一種對(duì)高維度特征數(shù)據(jù)預(yù)處理方法。降維是將高維度的數(shù)據(jù)保留下**重要的一些特征,去除噪聲和不重要的特征,從而實(shí)現(xiàn)提升數(shù)據(jù)處理速度的目的。在實(shí)際的生產(chǎn)和應(yīng)用中,降維在一定的信息損失范圍內(nèi),可以為我們節(jié)省大量的時(shí)間和成本。降維也成為應(yīng)用非常***的數(shù)據(jù)預(yù)處理方法。


數(shù)據(jù)要求:

表達(dá)譜芯片或測(cè)序數(shù)據(jù)(已經(jīng)過預(yù)處理)


下游分析

得到PCA分析結(jié)果之后的分析有:

1.對(duì)組成主要成分的基因進(jìn)行后續(xù)分析,探究該情況下關(guān)鍵基因表達(dá)情況

2.對(duì)組成不同主成分簇的基因進(jìn)行后續(xù)分析,探究該情況下不同基因集的表達(dá)情況 蛋白組代謝組個(gè)性化分析。

    PCA主成分分析測(cè)序技術(shù)的發(fā)展使得現(xiàn)在能夠從宏觀角度分析基因表達(dá),但是也在一定程度上增加了數(shù)據(jù)分析難度。許多基因之間可能存在相關(guān)性,如果分別對(duì)每個(gè)基因進(jìn)行分析,分析往往是孤立的,盲目減少指標(biāo)會(huì)損失很多有用的信息。PCA(PrincipalComponentAnalysis),即主成分分析方法,是一種使用*****的數(shù)據(jù)降維算法。一般可應(yīng)用的研究方向有:一組基因在多個(gè)分組中的差異情況,多個(gè)基因在該樣本中的差異情況。基本原理PCA的主要思想是將n維特征映射到k維上,這k維是全新的正交特征也被稱為主成分,是在原有n維特征的基礎(chǔ)上重新構(gòu)造出來的k維特征。PCA的工作就是從原始的空間中順序地找一組相互正交的坐標(biāo)軸,新的坐標(biāo)軸的選擇與數(shù)據(jù)本身是密切相關(guān)的。其中,**個(gè)新坐標(biāo)軸選擇是原始數(shù)據(jù)中方差**的方向,第二個(gè)新坐標(biāo)軸選取是與**個(gè)坐標(biāo)軸正交的平面中使得方差**的,第三個(gè)軸是與第1,2個(gè)軸正交的平面中方差**的。依次類推,可以得到n個(gè)這樣的坐標(biāo)軸。通過這種方式獲得的新的坐標(biāo)軸,我們發(fā)現(xiàn),大部分方差都包含在前面k個(gè)坐標(biāo)軸中,后面的坐標(biāo)軸所含的方差幾乎為0。于是,我們可以忽略余下的坐標(biāo)軸,只保留前面k個(gè)含有絕大部分方差的坐標(biāo)軸。事實(shí)上。 WGCNA其譯為加權(quán)基因共表達(dá)網(wǎng)絡(luò)分析。上海組學(xué)實(shí)驗(yàn)數(shù)據(jù)科學(xué)

承擔(dān)各類項(xiàng)目超過400余項(xiàng)。湖北公共數(shù)據(jù)庫挖掘數(shù)據(jù)科學(xué)經(jīng)驗(yàn)豐富

    下游分析針對(duì)LASSO獲得的基因模型(或稱基因Panel)的驗(yàn)證:1.計(jì)算風(fēng)險(xiǎn)指數(shù)RiskScore2.繪制ROC曲線、DCA曲線、列線圖進(jìn)行驗(yàn)證3.繪制生KM存曲線對(duì)基因模型中的基因進(jìn)行解釋和分析:1.基因注釋2.靶向藥物分析應(yīng)用示例:文獻(xiàn)1:PrognosticandpredictivevalueofamicroRNAsignatureinstageIIcoloncancer:amicroRNAexpressionanalysis.于2013年12月發(fā)表在LancetOncol.,影響因子。一個(gè)miRNA特征集在stageII結(jié)腸*的預(yù)后預(yù)測(cè)作用分析文章對(duì)stageII結(jié)腸*組織和*旁正常組織的miRNA芯片數(shù)據(jù)進(jìn)行了差異表達(dá)分析,并通過LASSOCox回歸對(duì)獲得的差異表達(dá)miRNA進(jìn)行篩選,獲得了6個(gè)miRNA的可以預(yù)測(cè)預(yù)后情況的miRNA特征集。文獻(xiàn)2:PrognosticValueofaBCSC-associatedMicroRNASignatureinHormoneReceptor-PositiveHER2-NegativeBreastCancer(于2016年9月發(fā)表在EBioMedicine.上,影響因子)文章將符合條件的患者劃分為訓(xùn)練集和測(cè)試集,首先分析獲得了**干細(xì)胞相關(guān)的miRNA,接著通過LASSO對(duì)**干細(xì)胞相關(guān)的miRNA進(jìn)行篩選,構(gòu)建了10個(gè)miRNA的預(yù)后預(yù)測(cè)模型,并計(jì)算風(fēng)險(xiǎn)指數(shù)繪制了生存曲線和ROC曲線。 湖北公共數(shù)據(jù)庫挖掘數(shù)據(jù)科學(xué)經(jīng)驗(yàn)豐富