激光熒光雙光子顯微鏡

來源: 發(fā)布時(shí)間:2024-10-22

目前,世界各國(guó)的腦科學(xué)研究如火如荼,中國(guó)的腦計(jì)劃也即將啟動(dòng)。其中,關(guān)于全景式解析腦連接圖譜和功能動(dòng)態(tài)圖譜的研究成為重點(diǎn)研究方向,而如何打破尺度壁壘,融合微觀神經(jīng)元和神經(jīng)突觸活動(dòng)與大腦整體的信息處理和個(gè)體行為信息,是領(lǐng)域內(nèi)亟待解決的一個(gè)關(guān)鍵挑戰(zhàn)。2021年1月6日,由北京大學(xué)分子醫(yī)學(xué)研究所牽頭,聯(lián)合北大信息科學(xué)技術(shù)學(xué)院電子學(xué)系、工學(xué)院以及中國(guó)人民******醫(yī)學(xué)科學(xué)院等組成的跨學(xué)科團(tuán)隊(duì),在NatureMethods在線發(fā)表題為“Miniaturetwo-photonmicroscopyforenlargedfield-of-view,multi-plane,andlong-termbrainimaging”的文章。文中報(bào)道了第二代微型化雙光子熒光顯微鏡FHIRM-TPM2.0,其成像視野是該團(tuán)隊(duì)于2017年發(fā)布的低1代微型化顯微鏡的7.8倍,同時(shí)具備三維成像能力,獲取了小鼠在自由運(yùn)動(dòng)行為中大腦三維區(qū)域內(nèi)上千個(gè)神經(jīng)元清晰穩(wěn)定的動(dòng)態(tài)功能圖像,并且實(shí)現(xiàn)了針對(duì)同一批神經(jīng)元長(zhǎng)達(dá)一個(gè)月的追蹤記錄。雙光子顯微鏡能夠在細(xì)胞甚至是亞細(xì)胞水平上對(duì)神經(jīng)細(xì)胞的形態(tài)結(jié)構(gòu)、離子濃度、細(xì)胞運(yùn)動(dòng)、進(jìn)行直接成像監(jiān)測(cè)。激光熒光雙光子顯微鏡

激光熒光雙光子顯微鏡,雙光子顯微鏡

臨研所、病理科和科研處邀請(qǐng)北京大學(xué)王愛民副教授在2020年12月22日做了題目為“新一代微型雙光子顯微成像系統(tǒng)介紹及其在臨床醫(yī)療診斷”的學(xué)術(shù)報(bào)告。學(xué)術(shù)報(bào)告由臨研所醫(yī)學(xué)實(shí)驗(yàn)研究平臺(tái)潘琳老師主持。王愛民,北京大學(xué)信息科學(xué)技術(shù)學(xué)院副教授,畢業(yè)于北京大學(xué)物理系,獲學(xué)士、碩士學(xué)位,后于英國(guó)巴斯大學(xué)物理系獲博士學(xué)位。該研究組研發(fā)的微型雙光子顯微鏡,第1次在國(guó)際上獲得了小鼠大腦神經(jīng)元和神經(jīng)突觸清晰穩(wěn)定的動(dòng)態(tài)信號(hào),該成果獲得了2017年度“中國(guó)光學(xué)進(jìn)展”和“中國(guó)科學(xué)進(jìn)展”,并被NatureMethods評(píng)為2018年度“年度方法--無限制行為動(dòng)物成像”。目前,該研究組正在研究新一代雙光子顯微成像技術(shù)在臨床診斷中的應(yīng)用,為未來即時(shí)病理、離體組織檢測(cè)、術(shù)中診斷等提供新型的影像手段和分析方法。布魯克雙光子顯微鏡成像原理是什么雙光子顯微鏡已延伸到各個(gè)領(lǐng)域研究中,它能對(duì)樣品進(jìn)行三維觀察。

激光熒光雙光子顯微鏡,雙光子顯微鏡

首先我們來簡(jiǎn)單介紹一下激光掃描共聚焦和雙光子這兩種當(dāng)紅的顯微成像技術(shù)。激光掃描共聚焦顯微技術(shù),是熒光顯微成像的一種,用于激發(fā)樣品的熒光信號(hào)并對(duì)其放大成像。在激光掃描共聚焦顯微鏡中,樣品焦平面上每一時(shí)刻只有一個(gè)點(diǎn)被激發(fā)光照射,縱然焦平面外也有激發(fā)光照射,但通過探測(cè)器前的(pinhole),有焦平面上的熒光信號(hào)能被探測(cè)器接收。也就是說,每個(gè)時(shí)刻,只有焦平面上一個(gè)點(diǎn)的信號(hào)被探測(cè)。通過點(diǎn)掃描的方式,一個(gè)個(gè)點(diǎn)的信號(hào)就可以組合出終的圖像。雙光子顯微鏡(包括多光子顯微鏡)同樣采用點(diǎn)掃描的方式得到圖像。不同的是,其采用的激發(fā)光波長(zhǎng)較長(zhǎng),只有當(dāng)兩個(gè)(或更多)激發(fā)光光子幾乎同時(shí)轟擊熒光探針的時(shí)候才可能激發(fā)出熒光信號(hào)。所以只有在光子密度特別大的焦點(diǎn),出才會(huì)激發(fā)出熒光。也就是說,雙光子顯微鏡中,同樣每個(gè)時(shí)刻只有焦平面上一個(gè)點(diǎn)的信號(hào)被探測(cè),并且連焦平面外的熒光信號(hào)也不會(huì)有。

雙光子顯微鏡(2PM)可以對(duì)鈣離子傳感器和谷氨酸傳感器進(jìn)行亞細(xì)胞分辨率的成像,從而測(cè)量不透明腦深部的活動(dòng)。成像膜的電壓變化可以直接反映神經(jīng)元的活動(dòng),但神經(jīng)元活動(dòng)的速度對(duì)于常規(guī)的2PM來說太快了。目前,電壓成像主要由寬視場(chǎng)顯微鏡實(shí)現(xiàn),但其空間分辨率較差,且只能在淺深度成像。因此,為了以高空間分辨率成像不透明腦中膜電壓的變化,需要將成像速率提高2PM。面向模塊輸出端的子脈沖序列可視為從虛擬光源陣列發(fā)出的光,這些子脈沖在中繼到顯微鏡物鏡后形成空間分離和時(shí)間延遲的聚焦陣列。然后,該模塊被集成到一個(gè)帶有高速數(shù)據(jù)采集系統(tǒng)的標(biāo)準(zhǔn)雙光子熒光顯微鏡中,如圖2所示。光源是重復(fù)頻率為1MHz的920nm激光器。FACED模塊可以產(chǎn)生80個(gè)脈沖焦點(diǎn),脈沖時(shí)間間隔為2ns。這些焦點(diǎn)是虛擬源的圖像。虛光源越遠(yuǎn),物鏡處的光束尺寸越大,焦點(diǎn)越小。光束可以沿Y軸比沿X軸更好地填充物鏡,從而在X軸上產(chǎn)生0.82m和0.35m的橫向分辨率。雙光子顯微鏡的探測(cè)器,該怎么選用?

激光熒光雙光子顯微鏡,雙光子顯微鏡

與普通顯微鏡相比,電子顯微鏡可以在更小的尺度上觀察事物,冷凍電子顯微鏡可以觀察活性生物大分子。雙光子顯微鏡有什么優(yōu)勢(shì)?它能做普通光學(xué)顯微鏡做不到的事情嗎?原來雙光子顯微鏡可以準(zhǔn)確穿透厚標(biāo)本進(jìn)行定點(diǎn)和***觀察!因?yàn)殡姶挪ǖ牟ㄩL(zhǎng)越短,粒子越強(qiáng),散射的影響越大。雙光子顯微鏡將激發(fā)光源改為長(zhǎng)波長(zhǎng)激光,增加了激光的穿透力,同時(shí)降低了對(duì)細(xì)胞的毒性。此外,由于雙光子激發(fā)效應(yīng)只能發(fā)生在物鏡的焦點(diǎn)處,因此掃描精度極高,還可以提高激發(fā)光效率,減少掃描點(diǎn)以外的熒光物質(zhì)的消耗。雙光子顯微鏡在各領(lǐng)域研究中已有許多成功實(shí)例。激光雙光子顯微鏡商家電話

在深度組織中以較長(zhǎng)時(shí)間對(duì)細(xì)胞成像,雙光子顯微鏡是當(dāng)前之選。激光熒光雙光子顯微鏡

指示劑是如何負(fù)載細(xì)胞,目前有三種在神經(jīng)元上填充鈣離子指示劑的方法,且都可以用于體內(nèi)和體外研究。第一種方法是利用玻璃吸管將膜滲透性鹽或葡聚糖形式的指示劑注入單個(gè)神經(jīng)元中。此方法方便實(shí)驗(yàn)者控制單個(gè)神經(jīng)元內(nèi)的鈣離子指示劑濃度且信噪比較高。第二種是利用“批量加載”的方法將鈣離子指示劑染料負(fù)載神經(jīng)元,觀察對(duì)象為一群神經(jīng)元。盡管此方法可能導(dǎo)致一些膠質(zhì)細(xì)胞也被指示劑所標(biāo)記,但明顯提高了整體神經(jīng)元的標(biāo)記百分比,使研究者得以觀察到一群神經(jīng)元內(nèi)動(dòng)作電位相關(guān)性的活動(dòng)。第三種也較為常用,通過病毒轉(zhuǎn)染的方式使其基因編碼鈣離子指示劑。(A)單細(xì)胞注射法;(B)networkloading法;(C)通過病毒轉(zhuǎn)染使其基因編碼鈣離子指示劑(expressionofgeneticallyencodedcalciumindicators,GECI)激光熒光雙光子顯微鏡