有機熒光染料近紅外有機熒光染料:優(yōu)勢:發(fā)射波長在近紅外區(qū)域的熒光染料,如近紅外二區(qū)熒光染料(NIR-Ⅱ,1000~1700nm),由于其發(fā)射波長較長,光散射和組織自發(fā)熒光干擾較少,在生物組織成像中具有更高的時空分辨率和更深的成像深度13。例如,WenShi和其同事在中國科學院開發(fā)的一系列基于呫噸的染料(VIXs),其中VIX-4在波長超過1200nm處發(fā)出熒光,被用于小鼠的血液循環(huán)成像。研究人員將VIX-4封裝在脂質體中,注射到小鼠的尾靜脈,展示了該染料在生物成像中的良好性能12。應用場景:適用于需要深度成像和高分辨率的生物醫(yī)學研究,如**檢測、血管成像等。具有聚集誘導發(fā)光(AIE)特性的有機熒光染料:優(yōu)勢:相對傳統(tǒng)的因聚集導致熒光猝滅(ACQ)的染料,AIE染料在生物成像和診斷中受到越來越多的關注。例如,將具有AIE特性的染料BPMT和具有ACQ特性的染料硼二吡咯亞甲基(BODIPY)分別制成納米粒子(ANPs和BNPs)進行對比研究。結果表明,**負載BODIPY的BNPs(BNP1)能有效聚集在**組織中,實現(xiàn)長期無創(chuàng)成像,而高負載BPMT的ANP4生物成像能力較差。這說明通過巧妙運用納米技術,可將ACQ效應的弱點轉化為優(yōu)勢,實現(xiàn)高效的靶向**成像16。動物成像技術的一個重要發(fā)展方向是多模態(tài)融合成像。光聲熒光染料DIL
標記神經元:在動物體內,特定的熒光染料可以穩(wěn)定且持久地標記皮質脊髓神經元,用于病理生理學研究和切片膜片鉗研究。如將Fluoro-Red和Fluoro-Green注入麻醉新生大鼠的頸脊髓,固定的腦切片顯示出離散的內部皮質層中細長或金字塔形細胞輪廓中的***熒光,與V層錐體細胞一致,并且標記的神經元使用切片膜片鉗方法顯示出自發(fā)突觸活動4。用于細菌成像:有機熒光染料可用于大腸桿菌的超分辨率成像實驗。通過分光光度計測定大腸桿菌的生長曲線,以及將大腸桿菌與有機熒光染料尼羅紅共孵育,在超分辨率顯微鏡下實現(xiàn)了大腸桿菌細胞壁的熒光標記。這一實驗既結合了生物化學和分析化學相關實驗及儀器的原理和操作,也有利于學生深入了解新型的細菌熒光標記技術6。近紅外熒光壽命成像:近紅外(NIR)染料在小動物成像和漫射光學斷層掃描中用作熒光標記。通過三種方式將現(xiàn)有的共聚焦和多光子激光掃描顯微鏡(LSM)與時間相關單光子計數(shù)(TCSPC)熒光壽命成像(FLIM)系統(tǒng)相適應,用于近紅外FLIM。測試的許多近紅外染料在生物組織中顯示出明顯的壽命變化,取決于它們所結合的組織結構,因此近紅外FLIM可以提供有關組織組成和局部生化參數(shù)的補充信息7。組織熒光染料DID通過不同的連接方法將四種氨基菁染料通過反相微乳液共價封裝在二氧化硅納米顆粒內。
粒子介導的熒光染料的彈道遞送標記機制**近,已經使用粒子介導的熒光染料的彈道遞送以快速有效的方式標記神經元種群。在單個神經元的膜與涂有親脂性染料的顆粒接觸后,該技術允許以高爾基體樣的方式快速標記整個神經元。神經元可以用不同顏色的染料以受控的密度標記,以促進細胞之間結構相互作用的研究。其機制是利用粒子的高速運動將熒光染料傳遞到神經元中,實現(xiàn)快速標記17。DiOLISTIC染色標記機制DiOLISTIC染色使用基因***將熒光染料(例如DiI)引入大腦切片的神經元中。其標記機制是利用基因***將涂有熒光染料的顆粒高速發(fā)射到大腦切片中,使染料顆粒與神經元細胞膜接觸,從而實現(xiàn)對神經元的標記。該技術可以應用于所有年齡、物種和基因型的動物,并且可以與免疫染色結合以鑒定細胞的特定亞群。
蛋白質定量分析:**常用的蛋白質定量分析方法是染料結合分光光度法,而熒光法測定蛋白質是利用蛋白質使染料熒光強度的變化成正比的性質。例如在pH值為3.0左右的介質中,蛋白質可與熒光桃紅結合而使其熒光強度降低,且熒光降低程度與體系中蛋白質含量在一定范圍內成正比,據(jù)此可擬定測定蛋白質的熒光分析方法,此方法與傳統(tǒng)方法相比靈敏度較高6。三、印花性能研究對棉機織物進行印花時,采用不同的熒光染料可以測試印花織物的比較大反射率、亮度因子、色度坐標、熒光發(fā)射光譜以及耐皂洗色牢度和摩擦色牢度等性能。例如熒光黃染料質量百分含量在0.05%~0.1%范圍內時,其印花棉織物既有明顯的熒光效果,又有高可視性警示作用;而熒光橙染料和熒光紅染料在一定質量百分含量范圍內雖有明顯的熒光效果,但達不到國家標準規(guī)定的高可視性警示服的要求。其耐皂洗色牢度達到4~5級,耐摩擦色牢度達到3~4級5。不同結構修飾的噁嗪衍生物熒光染料的發(fā)色強度和熒光強度也有所不同。
動物成像技術不僅在醫(yī)學研究中具有重要應用,還可以拓展到其他領域。例如,在動物生產中,紅外熱成像(IRT)技術作為一種方便、高效、非接觸式的溫度測量技術,已經廣泛應用于監(jiān)測動物表面和**解剖區(qū)域的溫度、診斷早期疾病和炎癥、監(jiān)測動物應激水平、識別發(fā)情和排卵以及診斷懷孕和動物福利等方面11。未來,隨著技術的不斷發(fā)展,IRT技術可能會在動物生產中發(fā)揮更大的作用。在大動物皮層神經元在體成像研究中,新興技術如磁共振成像(MRI)、電生理方法和光學成像的應用,提高了神經元成像的分辨率和深度,還能夠實時跟蹤神經元活動17。這為理解大腦功能和神經系統(tǒng)疾病提供了新的途徑,也為動物成像技術在神經科學領域的應用拓展了新的方向。綜上所述,動物成像技術在未來具有多方面的潛在發(fā)展方向,包括提高空間分辨率和靈敏度、多模態(tài)融合成像、實時動態(tài)成像、標準化和質量控制以及拓展應用領域等。這些發(fā)展方向將為動物研究和醫(yī)學研究提供更強大的工具,推動生命科學的發(fā)展。開發(fā)具有光學可調基團的新的穩(wěn)定近紅外染料平臺,結合染料篩選和合理的設計策略來消除錯誤信號。ivis熒光染料標記
通過將近紅外熒光染料封裝在 ZIF - 90 的孔隙中,制備了三種 ATP 響應的近紅外熒光納米探針。光聲熒光染料DIL
在聚合物納米顆粒中的穩(wěn)定性:量子點被提議作為穩(wěn)定的熒光標記,并與其他有機染料(尼羅紅和DiI)在聚合物納米顆粒中的包封、在不同水性或親脂性介質中的擴散以及光穩(wěn)定性方面進行了比較1015。體外轉移到親水PBS溶液中顯示,8小時后,量子點、尼羅紅和DiI納米顆粒分別釋放出4.2±2.2%、15.5±2.0%和0.9±0.02%。然而,在親脂性介質中鏈甘油三酯和人工皮脂中,所有使用的染料都觀察到更高的擴散速率。三種不同標記物的熒光強度在24小時內保持穩(wěn)定。連續(xù)激光束照射使用共聚焦激光掃描顯微鏡表明,量子點比其他有機染料具有更高的穩(wěn)定性。這表明在不同的環(huán)境中,不同化學結構的熒光染料穩(wěn)定性存在差異。在分散熒光染料色漿中的穩(wěn)定性:以苯并吡喃類分散熒光染料和萘磺酸類陰離子分散劑為原料,通過濕磨法制備分散熒光染料色漿。光聲熒光染料DIL