早在上個世紀60年代,當人類制造出激光器后,科學家們根據激光的特性,較早提出的應用就是測距。在1967年7月,美國人進行了頭一次載人登月飛行,就在月球上安裝了一個發(fā)射裝置用于測算地球和月球的距離。隨后,正值冷戰(zhàn)時期的人們,將激光應用在了制彈上。飛機發(fā)射激光照射目標,同時投擲激光制彈對準目標飛行,用激光隨時修正自己的飛行路線,精確度非常高。20世紀70年代末,美國國家航空航天局(NASA)成功研制出一種具有掃描和高速數據記錄能力的機載海洋激光雷達。用在大西洋和切薩皮克灣進行了水深的測定,并且繪制出水深小于10m的海底地貌。此后,機載激光雷達系統(tǒng)蘊含的巨大應用潛力開始受到關注,并很快被應用到陸地地形勘測研究當中。激光雷達在環(huán)境監(jiān)測中用于監(jiān)測大氣污染物的濃度。重慶安防激光雷達
LiDAR 數據通常在空中收集,如NOAA在加州大蘇爾Bixby大橋上空的調查飛機(右圖)。這里的LiDAR數據顯示了Bixby大橋的俯視圖(左上)和側視圖(左下)。NOAA的科學家使用基于LiDAR的裝置檢查自然和人造環(huán)境。LiDAR數據支持洪水和風暴潮建模、水動力建模、海岸線測繪、應急響應、水文測量以及海岸脆弱性分析等活動。此外,地形LiDAR使用近紅外激光繪制地形和建筑物地圖,而測深LiDAR使用透水綠光繪制海底和河床地圖。在農業(yè)中,LiDAR可用于繪制拓撲圖和作物生長圖,從而提供有關肥料需求和灌溉需求的信息。河南高精度激光雷達覽沃激光雷達通過其突出的性能和可靠性,為無人車、農業(yè)應用等提供了高精度的測距和位姿解算能力。
激光雷達的工作原理:對人畜無害的紅外光束Light Pluses發(fā)射、反射和接收來探測物體。能探測的對象:白天或黑夜下的特定物體與車之間的距離。甚至由于反射度的不同,車道線和路面也是可以區(qū)分開來的。哪些物體無法探測:光束無法探測到被遮擋的物體。車用激光雷達工作原理就是蝙蝠測距用的回波時間(Time of Flight,縮寫為TOF)測量方法。分析目標物體表面的反射能量大小、反射波譜的幅度、頻率和相位等信息,輸出點云,從而呈現(xiàn)出目標物精確的三維結構信息。
優(yōu)劣勢分析,優(yōu)勢:首先,該設計減少了激光發(fā)射和接收的線數以實現(xiàn)一幀之內更高的線數,也隨之降低了對焦與標定的復雜度,因此生產效率得以大幅提升,并且相比于傳統(tǒng)機械式激光雷達,棱鏡式的成本有了大幅的下降。其次,只要掃描時間夠久,就能得到精度極高的點云以及環(huán)境建模,分辨率幾乎沒有上限,且可達到近100%的視場覆蓋率。劣勢:棱鏡式激光雷達FOV相對較小,且視場中心的掃描點非常密集,雷達的視場邊緣掃描點比較稀疏,在雷達啟動的短時間內會有分辨率過低的問題。對于高速移動的汽車來說,顯然不存在長時間掃描的情況,不過可以通過增加激光線束和功率實現(xiàn)更高的精度和更遠的探測距離,但機械結構也相對更加復雜,體積讓前兩者更難以控制,存在軸承或襯套的磨損等風險。軌道交通激光雷達能夠實時監(jiān)測軌道上的動態(tài)障礙物,并及時采取措施,確保軌道交通的安全。
參數指標:(一)視場角,視場角決定了激光雷達能夠看到的視野范圍,分為水平視場角和垂直視場角,視場角越大,表示視野范圍越大,反之則表示視野范圍越小。以圖3中的激光雷達為例,旋轉式激光雷達的水平視場角為360°,垂直視場角為26.9°,固態(tài)激光雷達的水平視場角為60°,垂直視場角為20°。(二)線數,線數越高,表示單位時間內采樣的點就越多,分辨率也就越高,目前無人駕駛車一般采用32線或64線的激光雷達。(三)分辨率,分辨率和激光光束之間的夾角有關,夾角越小,分辨率越高。固態(tài)激光雷達的垂直分辨率和水平分辨率大概相當,約為0.1°,旋轉式激光雷達的水平角分辨率為0.08°,垂直角分辨率約為0.4°。激光雷達的設計優(yōu)化提高了其在復雜環(huán)境中的可靠性。補盲激光雷達行價
激光雷達以其高分辨率成像能力,在無人機地形測繪中發(fā)揮著重要作用。重慶安防激光雷達
線數,線數越高,表示單位時間內采樣的點就越多,分辨率也就越高,目前無人駕駛車一般采用32線或64線的激光雷達。分辨率,分辨率和激光光束之間的夾角有關,夾角越小,分辨率越高。固態(tài)激光雷達的垂直分辨率和水平分辨率大概相當,約為0.1°,旋轉式激光雷達的水平角分辨率為0.08°,垂直角分辨率約為0.4°。探測距離,激光雷達的較大測量距離。在自動駕駛領域應用的激光雷達的測距范圍普遍在100~200m左右。測量精度,激光雷達的數據手冊中的測量精度(Accuracy)常表示為,例如±2cm的形式。精度表示設備測量位置與實際位置偏差的范圍。重慶安防激光雷達