杭州產(chǎn)品質(zhì)量監(jiān)測(cè)系統(tǒng)供應(yīng)商

來(lái)源: 發(fā)布時(shí)間:2024-03-22

傳統(tǒng)方法通常無(wú)法自適應(yīng)提取特征, 同時(shí)需要一定離線數(shù)據(jù)訓(xùn)練得到檢測(cè)模型, 但目標(biāo)對(duì)象在線場(chǎng)景下采集到的數(shù)據(jù)有限, 且其數(shù)據(jù)分布與訓(xùn)練數(shù)據(jù)的分布可能因隨機(jī)噪聲、變工況等原因而存在差異, 導(dǎo)致離線訓(xùn)練的模型并不完全適合于在線數(shù)據(jù), 容易降低檢測(cè)結(jié)果的準(zhǔn)確性; 其次, 上述方法通常采用基于異常點(diǎn)的檢測(cè)算法, 未充分考慮樣本前后的時(shí)序關(guān)系, 容易因數(shù)據(jù)微小波動(dòng)而產(chǎn)生誤報(bào)警, 降低檢測(cè)結(jié)果的魯棒性; 再次, 為降低誤報(bào)警, 這類(lèi)方法需要反復(fù)調(diào)整報(bào)警閾值. 此外, 基于系統(tǒng)分析的故障診斷方法利用狀態(tài)空間描述建立機(jī)理模型, 可獲得理想的診斷和檢測(cè)結(jié)果, 但這類(lèi)方法通常需要提前知道系統(tǒng)運(yùn)動(dòng)方程等信息, 對(duì)于軸承運(yùn)行來(lái)說(shuō), 這類(lèi)信息通常不易獲知. 近年來(lái), 深度神經(jīng)網(wǎng)絡(luò)已被成功應(yīng)用于早期故障特征自動(dòng)提取和識(shí)別, 可自適應(yīng)地提取信息豐富和判別能力強(qiáng)的深度特征, 因此具有較好的普適性. 但是, 這類(lèi)方法一方面需要大量輔助數(shù)據(jù)進(jìn)行模型訓(xùn)練, 而歷史采集的輔助數(shù)據(jù)與目標(biāo)對(duì)象數(shù)據(jù)可能存在較大不同, 直接訓(xùn)練并不能有效提升在線檢測(cè)的特征表示效果; 另一方面, 在訓(xùn)練過(guò)程中未能針對(duì)早期故障引發(fā)的狀態(tài)變化而有目的地強(qiáng)化相應(yīng)特征表示. 因此, 深度學(xué)習(xí)方法在早期故障在線監(jiān)測(cè)中的應(yīng)用仍存在較大的提升空間.電機(jī)驅(qū)動(dòng)的生產(chǎn)線。同時(shí)監(jiān)測(cè)多個(gè)電機(jī)的狀態(tài),協(xié)調(diào)故障診斷和預(yù)測(cè)性維護(hù),增加了監(jiān)測(cè)的復(fù)雜性。杭州產(chǎn)品質(zhì)量監(jiān)測(cè)系統(tǒng)供應(yīng)商

杭州產(chǎn)品質(zhì)量監(jiān)測(cè)系統(tǒng)供應(yīng)商,監(jiān)測(cè)

電機(jī)抖動(dòng)是指電機(jī)在運(yùn)行過(guò)程中發(fā)生的不正常震動(dòng),可能會(huì)導(dǎo)致機(jī)器故障和停機(jī)時(shí)間增加,進(jìn)而影響生產(chǎn)效率和產(chǎn)品質(zhì)量。常見(jiàn)的電機(jī)抖動(dòng)原因包括軸承損壞、不平衡、軸向偏移、電機(jī)定子或轉(zhuǎn)子損傷等。為了監(jiān)測(cè)大型電機(jī)設(shè)備的健康情況,可以采用以下方法:振動(dòng)監(jiān)測(cè):通過(guò)振動(dòng)傳感器安裝在電機(jī)上,實(shí)時(shí)監(jiān)測(cè)電機(jī)振動(dòng)情況,如果振動(dòng)超過(guò)正常范圍,則可以發(fā)出警報(bào)并停機(jī),以防止設(shè)備損壞。溫度監(jiān)測(cè):通過(guò)溫度傳感器監(jiān)測(cè)電機(jī)內(nèi)部和外部的溫度變化,如果發(fā)現(xiàn)異常的溫度升高,可能表明電機(jī)存在故障。潤(rùn)滑油監(jiān)測(cè):通過(guò)監(jiān)測(cè)電機(jī)內(nèi)部的潤(rùn)滑油質(zhì)量和油位,及時(shí)發(fā)現(xiàn)油中雜質(zhì)和油位不足等問(wèn)題,防止設(shè)備損壞。電流監(jiān)測(cè):通過(guò)電流傳感器監(jiān)測(cè)電機(jī)的電流變化,可以檢測(cè)電機(jī)是否存在負(fù)載過(guò)重、不平衡等問(wèn)題,及時(shí)采取措施。聲音監(jiān)測(cè):通過(guò)麥克風(fēng)或聲音傳感器監(jiān)測(cè)電機(jī)的聲音,可以判斷電機(jī)是否存在異響和雜音等異常情況,及時(shí)排除問(wèn)題。以上方法可以結(jié)合一起使用,形成一個(gè)完整的電機(jī)健康監(jiān)測(cè)系統(tǒng),有效地預(yù)防和解決電機(jī)抖動(dòng)等問(wèn)題,提高設(shè)備的穩(wěn)定性和可靠性。杭州發(fā)動(dòng)機(jī)監(jiān)測(cè)數(shù)據(jù)用攝像頭和圖像處理技術(shù)來(lái)監(jiān)測(cè)切削過(guò)程中刀具的形狀和外觀。磨損、缺口或其他異常可能通過(guò)圖像分析來(lái)檢測(cè)。

杭州產(chǎn)品質(zhì)量監(jiān)測(cè)系統(tǒng)供應(yīng)商,監(jiān)測(cè)

電機(jī)等振動(dòng)設(shè)備在運(yùn)行中,伴隨著一些安全問(wèn)題,振動(dòng)數(shù)據(jù)會(huì)發(fā)生變化,如果不及時(shí)發(fā)現(xiàn),容易導(dǎo)致起火或,造成大量的財(cái)產(chǎn)損失,而這些問(wèn)題具有突發(fā)性和不準(zhǔn)確性,難以預(yù)知,應(yīng)對(duì)這種情況,需要一種手段去解決。無(wú)線振動(dòng)傳感器直接讀取原始加速度數(shù)據(jù),準(zhǔn)確可靠,避免后期計(jì)算出現(xiàn)較大誤差。本傳感器采用無(wú)線通訊方式,低功耗設(shè)計(jì),一次性鋰亞電池供電,具有容量大、耐高溫、不宜爆等特點(diǎn)。工作原理:將傳感器分布式安裝在各類(lèi)電機(jī)、風(fēng)機(jī)、振動(dòng)平臺(tái)、回轉(zhuǎn)窯、傳送設(shè)備等需要振動(dòng)監(jiān)測(cè)的設(shè)備上實(shí)時(shí)采集振動(dòng)數(shù)據(jù),然后通過(guò)無(wú)線方式將數(shù)據(jù)發(fā)送給采集端,采集端將數(shù)據(jù)解析、顯示或傳輸。系統(tǒng)能實(shí)時(shí)在線監(jiān)測(cè)出設(shè)備異常,發(fā)出預(yù)警,避免事故發(fā)生。產(chǎn)品特點(diǎn)是(1)實(shí)時(shí)性:系統(tǒng)實(shí)時(shí)在線監(jiān)測(cè)電機(jī)等振動(dòng)參數(shù),避免了由于電機(jī)突然缺相、線圈故障,堵轉(zhuǎn)、固定螺栓松動(dòng)、負(fù)載過(guò)高和人為錯(cuò)誤操作等發(fā)生的事故。(2)便捷性:系統(tǒng)采用無(wú)線傳輸方式,傳感器的安裝,解決了以往因?yàn)榭臻g狹小、不能布線、安裝成本高等問(wèn)題。(3)可靠性:系統(tǒng)采用先進(jìn)成熟的傳感技術(shù)和無(wú)線傳輸技術(shù),抗干擾力強(qiáng),傳輸距離遠(yuǎn),讀數(shù)準(zhǔn)確,可靠性高。

基于數(shù)據(jù)的故障檢測(cè)與診斷方法能夠?qū)A康墓I(yè)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析和特征提取,將系統(tǒng)的狀態(tài)分為正常運(yùn)行狀態(tài)和故障狀態(tài)。故障檢測(cè)是判斷系統(tǒng)是否處于預(yù)期的正常運(yùn)行狀態(tài),判斷系統(tǒng)是否發(fā)生異常故障,相當(dāng)于一個(gè)二分類(lèi)任務(wù)。故障診斷是在確定發(fā)生故障的時(shí)候判斷系統(tǒng)處于哪一種故障狀態(tài),相當(dāng)于一個(gè)多分類(lèi)任務(wù)。因此,故障檢測(cè)和診斷技術(shù)研究類(lèi)似于模式識(shí)別,分為4個(gè)的步驟:數(shù)據(jù)獲取、特征提取、特征選擇和特征分類(lèi)。1)數(shù)據(jù)獲取步驟是從過(guò)程系統(tǒng)收集可能影響過(guò)程狀態(tài)的信號(hào),包括溫度、流量等過(guò)程變量;2)特征提取步驟是將采集的原始信號(hào)映射為有辨識(shí)度的狀態(tài)信息;3)特征選擇步驟是將與狀態(tài)變化相關(guān)的變量提取出來(lái);4)特征分類(lèi)步驟是通過(guò)算法將前幾步中選擇的特征進(jìn)行故障檢測(cè)與診斷。在大數(shù)據(jù)這一背景下,傳統(tǒng)的基于數(shù)據(jù)的故障檢測(cè)與診斷方法被廣泛應(yīng)用,但是,這些方法有一些共同的缺點(diǎn):特征提取需要大量的知識(shí)和信號(hào)處理技術(shù),并且對(duì)于不同的任務(wù),沒(méi)有統(tǒng)一的程序來(lái)完成。此外,常規(guī)的基于機(jī)器學(xué)習(xí)的方法結(jié)構(gòu)較淺,在提取信號(hào)的高維非線性關(guān)系方面能力有限。設(shè)備狀態(tài)監(jiān)測(cè)是對(duì)運(yùn)行中的設(shè)備進(jìn)行振動(dòng)、噪聲、溫度、濕度、環(huán)境壓力等狀態(tài)參數(shù)的定期或連續(xù)監(jiān)測(cè)。

杭州產(chǎn)品質(zhì)量監(jiān)測(cè)系統(tǒng)供應(yīng)商,監(jiān)測(cè)

電機(jī)狀態(tài)監(jiān)測(cè)和故障診斷技術(shù)是一種了解掌握電機(jī)在使用過(guò)程中狀態(tài),確定其整體或局部正?;虍惓?,早期發(fā)現(xiàn)故障及其原因,并能預(yù)報(bào)故障發(fā)展趨勢(shì)的技術(shù),電機(jī)狀態(tài)監(jiān)測(cè)與故障診斷技術(shù)包括識(shí)別電機(jī)狀態(tài)監(jiān)測(cè)和預(yù)測(cè)發(fā)展趨勢(shì)兩方面。設(shè)備狀態(tài)是指設(shè)備運(yùn)行的工況,由設(shè)備運(yùn)行過(guò)程中的各種性能參數(shù)以及設(shè)備運(yùn)行過(guò)程中產(chǎn)生的二次效應(yīng)參數(shù)和產(chǎn)品質(zhì)量指標(biāo)參數(shù)來(lái)描述。設(shè)備狀態(tài)的類(lèi)型包括:正常、異常和故障三種。設(shè)備狀態(tài)監(jiān)測(cè)是通過(guò)測(cè)定以上參數(shù),并進(jìn)行分析處理,根據(jù)分析處理結(jié)果判定設(shè)備狀態(tài)。對(duì)設(shè)備進(jìn)行定期或連續(xù)監(jiān)測(cè),包括采用各種測(cè)試、分析判別方法,結(jié)合設(shè)備的歷史狀況和運(yùn)行條件,弄清設(shè)備的客觀狀態(tài),獲取設(shè)備性能發(fā)展的趨勢(shì)規(guī)律,為設(shè)備的性能評(píng)價(jià)、合理使用、安全運(yùn)行、故障診斷及設(shè)備自動(dòng)控制打下堅(jiān)實(shí)基礎(chǔ)。電機(jī)監(jiān)測(cè)需要實(shí)時(shí)獲取和處理數(shù)據(jù),以及及時(shí)發(fā)出警報(bào)。要求數(shù)據(jù)采集和處理要高性能的硬件和快速的算法。南京電機(jī)監(jiān)測(cè)數(shù)據(jù)

對(duì)電機(jī)進(jìn)行監(jiān)測(cè),有助于判斷電機(jī)是否存在故障以及故障的類(lèi)型,保障電機(jī)的穩(wěn)定性和可靠性。杭州產(chǎn)品質(zhì)量監(jiān)測(cè)系統(tǒng)供應(yīng)商

基于人工神經(jīng)網(wǎng)絡(luò)的診斷方法簡(jiǎn)單處理單元連接而成的復(fù)雜的非線性系統(tǒng),具有很強(qiáng)的學(xué)習(xí)能力,自適應(yīng)能力,非線性逼近能力等。故障診斷的任務(wù)從映射角度看就是從征兆到故障類(lèi)型的映射。用ANN技術(shù)處理故障診斷問(wèn)題,不僅能進(jìn)行復(fù)雜故障診斷模式的識(shí)別,還能進(jìn)行故障嚴(yán)重性評(píng)估和故障預(yù)測(cè),由于ANN能自動(dòng)獲取診斷知識(shí),使診斷系統(tǒng)具有自適應(yīng)能力?;诩尚椭悄芟到y(tǒng)的診斷方法隨著電機(jī)設(shè)備系統(tǒng)越來(lái)越復(fù)雜,依靠單一的故障診斷技術(shù)已難滿足復(fù)雜電機(jī)設(shè)備的故障診斷要求,因此上述各種診斷技術(shù)集成起來(lái)形成的集成智能診斷系統(tǒng)成為當(dāng)前電機(jī)設(shè)備故障診斷研究的熱點(diǎn)。主要的集成技術(shù)有:基于規(guī)則的系統(tǒng)與ANN結(jié)合,模糊邏輯與ANN的結(jié)合,混沌理論與ANN的結(jié)合,模糊神經(jīng)網(wǎng)絡(luò)與系統(tǒng)的結(jié)合。杭州產(chǎn)品質(zhì)量監(jiān)測(cè)系統(tǒng)供應(yīng)商