常州狀態(tài)監(jiān)測(cè)公司

來(lái)源: 發(fā)布時(shí)間:2024-03-16

設(shè)備狀態(tài)監(jiān)測(cè)及故障預(yù)警若干關(guān)鍵技術(shù)可歸納如下:(1)揭示設(shè)備運(yùn)行狀態(tài)機(jī)械動(dòng)態(tài)特性劣化演變規(guī)律。設(shè)備由非故障運(yùn)行狀態(tài)劣化為故障運(yùn)行狀態(tài),其機(jī)械動(dòng)態(tài)特性通常有一個(gè)發(fā)展演變過(guò)程(2)提取設(shè)備運(yùn)行狀態(tài)發(fā)展趨勢(shì)特征。在役設(shè)備往往具有復(fù)雜運(yùn)行狀態(tài),在長(zhǎng)歷程運(yùn)行中工況和負(fù)載等非故障因素會(huì)造成信號(hào)能量變化,故障趨勢(shì)信息往往被非故障變化信息淹沒(méi),需較大程度上消除非故障變化造成的冗余信息,進(jìn)而構(gòu)建預(yù)測(cè)模型。動(dòng)力裝備全壽命周期監(jiān)測(cè)診斷方面:實(shí)現(xiàn)了支持物聯(lián)網(wǎng)的智能信息采集與管理、全生命周期動(dòng)態(tài)自適應(yīng)監(jiān)測(cè)、早期非線性故障特征提取。優(yōu)化重構(gòu)出綜合體現(xiàn)裝備運(yùn)行工況及表現(xiàn)的新參數(shù),提高異常狀態(tài)辨識(shí)的適應(yīng)性與可靠性,基于運(yùn)行過(guò)程信息反映裝備劣化趨勢(shì)與故障發(fā)展規(guī)律,來(lái)提高故障早期辨識(shí)能力?;谖锫?lián)網(wǎng)和網(wǎng)絡(luò)化監(jiān)測(cè)診斷將產(chǎn)品監(jiān)測(cè)診斷與運(yùn)行服務(wù)支持有機(jī)集成一體,在應(yīng)用中實(shí)現(xiàn)動(dòng)力裝備常見(jiàn)故障診斷準(zhǔn)確率達(dá)80%以上。應(yīng)用于風(fēng)力大電機(jī)、空壓機(jī)等大型動(dòng)力裝備的集群化診斷領(lǐng)域。提供了基于物聯(lián)網(wǎng)的動(dòng)力裝備全生命周期監(jiān)測(cè)與服務(wù)支持創(chuàng)新模式,提供了其生命周期的遠(yuǎn)程監(jiān)測(cè)診斷與維護(hù)等專(zhuān)業(yè)化服務(wù)。隨著技術(shù)的發(fā)展,設(shè)備狀態(tài)監(jiān)測(cè)在工業(yè)、物聯(lián)網(wǎng)等領(lǐng)域的應(yīng)用越來(lái)越多。常州狀態(tài)監(jiān)測(cè)公司

常州狀態(tài)監(jiān)測(cè)公司,監(jiān)測(cè)

針對(duì)刀具磨損狀態(tài)在實(shí)際生產(chǎn)加工過(guò)程中難以在線監(jiān)測(cè)這個(gè)問(wèn)題,提出一種通過(guò)通信技術(shù)獲取機(jī)床內(nèi)部數(shù)據(jù),對(duì)當(dāng)前的刀具磨損狀態(tài)進(jìn)行識(shí)別的方法。通過(guò)采集機(jī)床內(nèi)部實(shí)時(shí)數(shù)據(jù)并將其與實(shí)際加工情景緊密結(jié)合,能直接反映當(dāng)前的加工狀態(tài)。將卷積神經(jīng)網(wǎng)絡(luò)用于構(gòu)建刀具磨損狀態(tài)識(shí)別模型,直接將采集到數(shù)據(jù)作為輸入,得到了和傳統(tǒng)方法精度近似的預(yù)測(cè)模型,模型在訓(xùn)練集和在線驗(yàn)證試驗(yàn)中的表現(xiàn)都符合預(yù)期。刀具磨損狀態(tài)識(shí)別的方法在投入使用時(shí)還有一些問(wèn)題有待解決:①現(xiàn)有數(shù)據(jù)是在相同的加工條件下測(cè)得的,而實(shí)際加工過(guò)程中,加工參數(shù)以及加工情景是不斷變化的,因此需要在下一步的研究中,進(jìn)行變參數(shù)試驗(yàn),考慮加工參數(shù)對(duì)于刀具磨損的影響,并針對(duì)常用的一些加工場(chǎng)景,建立不同的模型庫(kù)。變換加工場(chǎng)景時(shí),通過(guò)獲取當(dāng)前場(chǎng)景,及時(shí)匹配相應(yīng)的預(yù)測(cè)模型即可。②本研究中模型是一個(gè)固定的模型。今后需要根據(jù)實(shí)時(shí)的信號(hào)以及已知的磨損狀態(tài),對(duì)模型進(jìn)行實(shí)時(shí)更新,從而在實(shí)時(shí)監(jiān)測(cè)過(guò)程中實(shí)現(xiàn)自學(xué)習(xí),不斷提升模型的精度和預(yù)測(cè)效果。常州狀態(tài)監(jiān)測(cè)公司使用絕緣監(jiān)測(cè)設(shè)備來(lái)檢測(cè)電機(jī)繞組和絕緣系統(tǒng)的健康狀況。絕緣降低可能導(dǎo)致繞組短路或絕緣擊穿。

常州狀態(tài)監(jiān)測(cè)公司,監(jiān)測(cè)

電機(jī)等振動(dòng)設(shè)備在運(yùn)行中,伴隨著一些安全問(wèn)題,振動(dòng)數(shù)據(jù)會(huì)發(fā)生變化,如果不及時(shí)發(fā)現(xiàn),容易導(dǎo)致起火或,造成大量的財(cái)產(chǎn)損失,而這些問(wèn)題具有突發(fā)性和不準(zhǔn)確性,難以預(yù)知,應(yīng)對(duì)這種情況,需要一種手段去解決。無(wú)線振動(dòng)傳感器直接讀取原始加速度數(shù)據(jù),準(zhǔn)確可靠,避免后期計(jì)算出現(xiàn)較大誤差。本傳感器采用無(wú)線通訊方式,低功耗設(shè)計(jì),一次性鋰亞電池供電,具有容量大、耐高溫、不宜爆等特點(diǎn)。工作原理:將傳感器分布式安裝在各類(lèi)電機(jī)、風(fēng)機(jī)、振動(dòng)平臺(tái)、回轉(zhuǎn)窯、傳送設(shè)備等需要振動(dòng)監(jiān)測(cè)的設(shè)備上實(shí)時(shí)采集振動(dòng)數(shù)據(jù),然后通過(guò)無(wú)線方式將數(shù)據(jù)發(fā)送給采集端,采集端將數(shù)據(jù)解析、顯示或傳輸。系統(tǒng)能實(shí)時(shí)在線監(jiān)測(cè)出設(shè)備異常,發(fā)出預(yù)警,避免事故發(fā)生。產(chǎn)品特點(diǎn)是(1)實(shí)時(shí)性:系統(tǒng)實(shí)時(shí)在線監(jiān)測(cè)電機(jī)等振動(dòng)參數(shù),避免了由于電機(jī)突然缺相、線圈故障,堵轉(zhuǎn)、固定螺栓松動(dòng)、負(fù)載過(guò)高和人為錯(cuò)誤操作等發(fā)生的事故。(2)便捷性:系統(tǒng)采用無(wú)線傳輸方式,傳感器的安裝,解決了以往因?yàn)榭臻g狹小、不能布線、安裝成本高等問(wèn)題。(3)可靠性:系統(tǒng)采用先進(jìn)成熟的傳感技術(shù)和無(wú)線傳輸技術(shù),抗干擾力強(qiáng),傳輸距離遠(yuǎn),讀數(shù)準(zhǔn)確,可靠性高。

刀具監(jiān)測(cè)技術(shù)主要可以分為兩大類(lèi):直接監(jiān)測(cè)方法和間接監(jiān)測(cè)方法。直接監(jiān)測(cè)方法通常是通過(guò)使用光學(xué)或觸覺(jué)傳感器直接觀察刀具的磨損情況。這種方法精度高,但必須進(jìn)行停機(jī)檢測(cè),時(shí)間成本較高,因此不適用于工業(yè)生產(chǎn)。間接監(jiān)測(cè)方法則是通過(guò)監(jiān)測(cè)與刀具磨損或破損密切相關(guān)的傳感器信號(hào),如振動(dòng)、切削力、電流功率和聲發(fā)射等,并利用建立的數(shù)學(xué)模型間接獲得刀具磨損量或刀具破損狀態(tài)。這種方法可以在機(jī)床加工過(guò)程中持續(xù)進(jìn)行,不影響加工進(jìn)度,因此更適用于在線監(jiān)測(cè)。其中,基于振動(dòng)的監(jiān)測(cè)法是一種常用的間接監(jiān)測(cè)方法。切削過(guò)程中,振動(dòng)信號(hào)包含豐富的與刀具狀態(tài)密切相關(guān)的信息。通過(guò)測(cè)量和分析振動(dòng)信號(hào),可以有效地監(jiān)測(cè)刀具的磨損和破損情況。此外,切削力監(jiān)測(cè)法也是一種常用的間接監(jiān)測(cè)方法。加工過(guò)程中,切削力會(huì)隨著刀具狀態(tài)的變化而改變,因此通過(guò)監(jiān)測(cè)切削力的變化也可以有效地判斷刀具的狀態(tài)??偟膩?lái)說(shuō),刀具監(jiān)測(cè)技術(shù)對(duì)于確保加工質(zhì)量和提高生產(chǎn)效率具有重要意義。在實(shí)際應(yīng)用中,應(yīng)根據(jù)具體的加工需求和條件選擇合適的監(jiān)測(cè)方法和技術(shù)。部署和維護(hù)電機(jī)監(jiān)測(cè)系統(tǒng)可能需要昂貴的設(shè)備和專(zhuān)業(yè)知識(shí),這可能對(duì)一些小型或預(yù)算有限的應(yīng)用造成挑戰(zhàn)。

常州狀態(tài)監(jiān)測(cè)公司,監(jiān)測(cè)

故障預(yù)測(cè)與健康管理是以工業(yè)監(jiān)測(cè)數(shù)據(jù)為基礎(chǔ),通過(guò)高等數(shù)學(xué)、數(shù)學(xué)優(yōu)化、統(tǒng)計(jì)概率、信號(hào)處理、機(jī)器學(xué)習(xí)和統(tǒng)計(jì)學(xué)習(xí)等技術(shù)搭建模型算法,實(shí)現(xiàn)產(chǎn)品和裝備的狀態(tài)監(jiān)測(cè)、故障診斷及壽命預(yù)測(cè),為產(chǎn)品和裝備的正常運(yùn)行保駕護(hù)航,從而提高其安全性和可靠性。故障預(yù)測(cè)與健康管理是以工業(yè)監(jiān)測(cè)數(shù)據(jù)為基礎(chǔ),通過(guò)高等數(shù)學(xué)、數(shù)學(xué)優(yōu)化、統(tǒng)計(jì)概率、信號(hào)處理、機(jī)器學(xué)習(xí)和統(tǒng)計(jì)學(xué)習(xí)等技術(shù)搭建模型算法,實(shí)現(xiàn)產(chǎn)品和裝備狀態(tài)監(jiān)測(cè)、故障診斷及壽命預(yù)測(cè),為產(chǎn)品和裝備的正常運(yùn)行保駕護(hù)航,從而提高其安全性和可靠性。近年來(lái)我們提出的標(biāo)準(zhǔn)化平方包絡(luò)和數(shù)學(xué)框架以及準(zhǔn)算數(shù)均值比數(shù)學(xué)框架指引了稀疏測(cè)度構(gòu)造的新方向,同時(shí)發(fā)現(xiàn)了大量基尼指數(shù)、峭度、香農(nóng)熵等具有等價(jià)性能的稀疏測(cè)度?;跇?biāo)準(zhǔn)化平方包絡(luò)和數(shù)學(xué)框架以及凸優(yōu)化技術(shù),提出了在線更新模型權(quán)重可解釋的機(jī)器學(xué)習(xí)算法,可以利用模型權(quán)重來(lái)實(shí)時(shí)確認(rèn)故障特征頻率,解決了狀態(tài)監(jiān)測(cè)與故障診斷領(lǐng)域傳統(tǒng)機(jī)器學(xué)習(xí)只能輸出狀態(tài),而無(wú)法提供故障特征來(lái)確認(rèn)輸出狀態(tài)的難題。不同類(lèi)型的電機(jī)在結(jié)構(gòu)和工作原理上可能有很大差異,監(jiān)測(cè)系統(tǒng)需要根據(jù)具體電機(jī)的特性進(jìn)行定制。溫州狀態(tài)監(jiān)測(cè)技術(shù)

通過(guò)監(jiān)測(cè)電機(jī)振動(dòng)的頻率和振幅,可以評(píng)估電機(jī)軸承和其他旋轉(zhuǎn)部件的狀況。常州狀態(tài)監(jiān)測(cè)公司

作為工業(yè)領(lǐng)域的一種關(guān)鍵旋轉(zhuǎn)設(shè)備,對(duì)于終端用來(lái)說(shuō),關(guān)于電機(jī)維護(hù)的主要是電氣班組的設(shè)備工程師、電機(jī)維護(hù)工程師、電機(jī)檢修人員等;對(duì)于電機(jī)廠家以及電機(jī)經(jīng)銷(xiāo)商來(lái)說(shuō),主要是電機(jī)售后服務(wù)工程師、電機(jī)銷(xiāo)售人員,會(huì)涉及到電機(jī)的運(yùn)行維護(hù);險(xiǎn)此之外,還有第三方檢修人員等。目前已經(jīng)有很多智能產(chǎn)品號(hào)稱可以實(shí)現(xiàn)電機(jī)的預(yù)測(cè)性維護(hù),但問(wèn)題也非常多。1)傳感器安裝難。設(shè)備狀態(tài)監(jiān)測(cè)需要振動(dòng)、噪聲、溫度傳感器,通訊協(xié)議并不統(tǒng)一,自成體系,安裝、使用、維護(hù)成本高昂。2)技術(shù)成本高。工業(yè)場(chǎng)景設(shè)備類(lèi)型多,運(yùn)行工況復(fù)雜,預(yù)測(cè)性維護(hù)算法涉及數(shù)據(jù)預(yù)處理、工業(yè)機(jī)理、機(jī)器學(xué)習(xí),技術(shù)要求很高。3)時(shí)間成本高。預(yù)測(cè)性維護(hù)要實(shí)現(xiàn),前期需要大量歷史數(shù)據(jù)的支撐,數(shù)據(jù)采集、歸納、分析是一個(gè)漫長(zhǎng)的過(guò)程。以電機(jī)預(yù)測(cè)性維護(hù)的理念為原型的電機(jī)智能運(yùn)維,雖然被各大宣傳媒體提得很多,但還遠(yuǎn)遠(yuǎn)未到落地很好乃至普及的程度,不論是預(yù)測(cè)性維護(hù)的預(yù)測(cè)效果,還是電機(jī)的智能運(yùn)維的市場(chǎng)推廣以及市場(chǎng)接受程度,對(duì)于電機(jī)維護(hù)人員的電機(jī)運(yùn)維來(lái)說(shuō),都還有很遠(yuǎn)的一段距離!常州狀態(tài)監(jiān)測(cè)公司