振動(dòng)的監(jiān)測是機(jī)械設(shè)備狀態(tài)監(jiān)測與故障診斷的重要手段之一。通過對機(jī)械設(shè)備在運(yùn)行過程中產(chǎn)生的振動(dòng)信號進(jìn)行測量、分析和處理,可以獲取設(shè)備的狀態(tài)信息,進(jìn)而判斷設(shè)備的健康狀況,預(yù)測故障發(fā)展趨勢,及時(shí)發(fā)現(xiàn)并處理潛在問題。振動(dòng)的監(jiān)測方法通常可以分為定期點(diǎn)檢、隨機(jī)點(diǎn)檢和長期監(jiān)測等幾種方式。定期點(diǎn)檢是按照預(yù)定的時(shí)間間隔對設(shè)備進(jìn)行振動(dòng)測量,適用于對設(shè)備狀態(tài)進(jìn)行定期檢查和評估。隨機(jī)點(diǎn)檢則是在設(shè)備運(yùn)行過程中,根據(jù)需要對設(shè)備進(jìn)行振動(dòng)測量,適用于對設(shè)備狀態(tài)進(jìn)行實(shí)時(shí)跟蹤和監(jiān)測。長期監(jiān)測則是對設(shè)備進(jìn)行連續(xù)不斷的振動(dòng)監(jiān)測,適用于對設(shè)備狀態(tài)進(jìn)行長期跟蹤和分析。在振動(dòng)監(jiān)測中,常用的傳感器包括加速度計(jì)、速度計(jì)和位移計(jì)等。這些傳感器可以測量設(shè)備在不同方向上的振動(dòng)信號,并將振動(dòng)信號轉(zhuǎn)換為電信號進(jìn)行傳輸和處理。通過對振動(dòng)信號的分析,可以獲取設(shè)備的振動(dòng)特征參數(shù),如振動(dòng)幅值、頻率、相位等,進(jìn)而判斷設(shè)備的運(yùn)行狀態(tài)和故障類型??傊?,振動(dòng)的監(jiān)測是機(jī)械設(shè)備狀態(tài)監(jiān)測與故障診斷的重要手段之一。通過對振動(dòng)信號的測量、分析和處理,可以及時(shí)發(fā)現(xiàn)并處理潛在問題,提高設(shè)備的可靠性和生產(chǎn)效率。同時(shí),振動(dòng)監(jiān)測技術(shù)還可以為設(shè)備的預(yù)測性維護(hù)和優(yōu)化運(yùn)行提供有力支持。通過設(shè)備狀態(tài)監(jiān)測,可以解決設(shè)備各種監(jiān)控?cái)?shù)據(jù)的復(fù)雜性,狀態(tài)動(dòng)態(tài)變化帶來的不確定性。常州EOL監(jiān)測技術(shù)
深度學(xué)習(xí)技術(shù)已經(jīng)在滾動(dòng)軸承故障監(jiān)測和診斷領(lǐng)域取得了成功應(yīng)用, 但面對不停機(jī)情況下的早期故障在線監(jiān)測問題, 仍存在著早期故障特征表示不充分、誤報(bào)警率高等不足. 為解決上述問題, 本文從時(shí)序異常檢測的角度出發(fā), 提出了一種基于深度遷移學(xué)習(xí)的早期故障在線檢測方法. 首先, 提出一種面向多域遷移的深度自編碼網(wǎng)絡(luò), 通過構(gòu)建具有改進(jìn)的比較大均值差異正則項(xiàng)和Laplace正則項(xiàng)的損失函數(shù), 在自適應(yīng)提取不同域數(shù)據(jù)的公共特征表示同時(shí), 提高正常狀態(tài)和早期故障狀態(tài)之間特征的差異性; 基于該特征表示, 提出一種基于時(shí)序異常模式的在線檢測模型, 利用離線軸承正常狀態(tài)的排列熵值構(gòu)建報(bào)警閾值, 實(shí)現(xiàn)在線數(shù)據(jù)中異常序列的快速匹配, 同時(shí)提高在線檢測結(jié)果的可靠性. 在XJTU-SY數(shù)據(jù)集上的實(shí)驗(yàn)結(jié)果表明, 與現(xiàn)有代表性早期故障檢測方法相比, 本文方法具有更好的檢測實(shí)時(shí)性和更低的誤報(bào)警數(shù).寧波狀態(tài)監(jiān)測公司振動(dòng)監(jiān)測是應(yīng)用行之有效的方法之一。通過安裝振動(dòng)傳感器并實(shí)時(shí)監(jiān)測設(shè)備的振動(dòng)特征。
傳統(tǒng)維護(hù)模式中的故障后維護(hù)與定期維護(hù)將影響生產(chǎn)效率與產(chǎn)品質(zhì)量,并大幅提高制造商的成本。隨著物聯(lián)網(wǎng)、大數(shù)據(jù)、云計(jì)算、機(jī)器學(xué)習(xí)與傳感器等技術(shù)的成熟,預(yù)測性維護(hù)技術(shù)應(yīng)運(yùn)而生。以各類如電機(jī)、軸承等設(shè)備為例,目前已發(fā)展到較為成熟的在線持續(xù)監(jiān)測階段,來實(shí)現(xiàn)查看設(shè)備是否需要維護(hù)、怎么安排維護(hù)時(shí)間來減少計(jì)劃性停產(chǎn)等,并能夠快速、有效的通過物聯(lián)網(wǎng)接入到整個(gè)網(wǎng)絡(luò),將數(shù)據(jù)回傳至管理中心,來實(shí)現(xiàn)電機(jī)設(shè)備的預(yù)測性維護(hù)。以各類如電機(jī)、軸承等設(shè)備為例,目前已發(fā)展到較為成熟在線持續(xù)監(jiān)測階段,來實(shí)現(xiàn)查看設(shè)備是否需要維護(hù)、怎么安排維護(hù)時(shí)間來減少計(jì)劃性停產(chǎn)等,并能夠快速、有效的通過物聯(lián)網(wǎng)接入到整個(gè)網(wǎng)絡(luò),將數(shù)據(jù)回傳至管理中心,來實(shí)現(xiàn)電機(jī)設(shè)備的預(yù)測性維護(hù)。實(shí)現(xiàn)工業(yè)互聯(lián)網(wǎng)。
設(shè)備狀態(tài)監(jiān)測及故障預(yù)警若干關(guān)鍵技術(shù)可歸納如下:(1)揭示設(shè)備運(yùn)行狀態(tài)機(jī)械動(dòng)態(tài)特性劣化演變規(guī)律。設(shè)備由非故障運(yùn)行狀態(tài)劣化為故障運(yùn)行狀態(tài),其機(jī)械動(dòng)態(tài)特性通常有一個(gè)發(fā)展演變過程(2)提取設(shè)備運(yùn)行狀態(tài)發(fā)展趨勢特征。在役設(shè)備往往具有復(fù)雜運(yùn)行狀態(tài),在長歷程運(yùn)行中工況和負(fù)載等非故障因素會(huì)造成信號能量變化,故障趨勢信息往往被非故障變化信息淹沒,需較大程度上消除非故障變化造成的冗余信息,進(jìn)而構(gòu)建預(yù)測模型。動(dòng)力裝備全壽命周期監(jiān)測診斷方面:實(shí)現(xiàn)了支持物聯(lián)網(wǎng)的智能信息采集與管理、全生命周期動(dòng)態(tài)自適應(yīng)監(jiān)測、早期非線性故障特征提取。優(yōu)化重構(gòu)出綜合體現(xiàn)裝備運(yùn)行工況及表現(xiàn)的新參數(shù),提高異常狀態(tài)辨識的適應(yīng)性與可靠性,基于運(yùn)行過程信息反映裝備劣化趨勢與故障發(fā)展規(guī)律,來提高故障早期辨識能力?;谖锫?lián)網(wǎng)和網(wǎng)絡(luò)化監(jiān)測診斷將產(chǎn)品監(jiān)測診斷與運(yùn)行服務(wù)支持有機(jī)集成一體,在應(yīng)用中實(shí)現(xiàn)動(dòng)力裝備常見故障診斷準(zhǔn)確率達(dá)80%以上。應(yīng)用于風(fēng)力大電機(jī)、空壓機(jī)等大型動(dòng)力裝備的集群化診斷領(lǐng)域。提供了基于物聯(lián)網(wǎng)的動(dòng)力裝備全生命周期監(jiān)測與服務(wù)支持創(chuàng)新模式,提供了其生命周期的遠(yuǎn)程監(jiān)測診斷與維護(hù)等專業(yè)化服務(wù)。通過監(jiān)測電機(jī)振動(dòng)的頻率和振幅,可以評估電機(jī)軸承和其他旋轉(zhuǎn)部件的狀況。
傳統(tǒng)維護(hù)模式中的故障后維護(hù)與定期維護(hù)將影響生產(chǎn)效率與產(chǎn)品質(zhì)量,并大幅提高制造商的成本。隨著物聯(lián)網(wǎng)、大數(shù)據(jù)、云計(jì)算、機(jī)器學(xué)習(xí)與傳感器等技術(shù)的成熟,預(yù)測性維護(hù)技術(shù)應(yīng)運(yùn)而生。以各類如電機(jī)、軸承等設(shè)備為例,目前已發(fā)展到較為成熟的在線持續(xù)監(jiān)測階段,來實(shí)現(xiàn)查看設(shè)備是否需要維護(hù)、怎么安排維護(hù)時(shí)間來減少計(jì)劃性停產(chǎn)等,并能夠快速、有效通過物聯(lián)網(wǎng)接入到整個(gè)網(wǎng)絡(luò),將數(shù)據(jù)回傳至管理中心,來實(shí)現(xiàn)電機(jī)設(shè)備的預(yù)測性維護(hù)。以各類如電機(jī)、軸承等設(shè)備為例,目前已發(fā)展到較為成熟在線持續(xù)監(jiān)測階段,來實(shí)現(xiàn)查看設(shè)備是否需要維護(hù)、怎么安排維護(hù)時(shí)間來減少計(jì)劃性停產(chǎn)等,并能夠快速、有效的通過物聯(lián)網(wǎng)接入到整個(gè)網(wǎng)絡(luò),將數(shù)據(jù)回傳至管理中心,來實(shí)現(xiàn)電機(jī)設(shè)備的預(yù)測性維護(hù)。利用數(shù)據(jù)分析和機(jī)器學(xué)習(xí)算法處理監(jiān)測數(shù)據(jù),建立模型以預(yù)測電機(jī)的壽命和性能。上?;旌蟿?dòng)力系統(tǒng)監(jiān)測技術(shù)
設(shè)備監(jiān)測可以滿足對部件疲勞程度診斷、機(jī)械摩擦磨損、機(jī)械沖擊、部件過熱等健康狀況問題的實(shí)時(shí)預(yù)警。常州EOL監(jiān)測技術(shù)
預(yù)測性維護(hù)對制造業(yè)在節(jié)省成本損耗、提升企業(yè)的生產(chǎn)效率和產(chǎn)業(yè)智能化升級具有非常重要的意義。國內(nèi)工業(yè)現(xiàn)場的存量設(shè)備數(shù)目相當(dāng)可觀,絕大多數(shù)還沒采用有效的預(yù)測性維護(hù)方案,尤其是大型旋轉(zhuǎn)類設(shè)備,一般都是主要生產(chǎn)運(yùn)行設(shè)備而且故障率相對較高,需要重點(diǎn)監(jiān)控和維護(hù)。通過振動(dòng)分析和診治對旋轉(zhuǎn)類設(shè)備進(jìn)行預(yù)防性維護(hù)無疑向我們展示了一個(gè)極具發(fā)展?jié)摿Φ氖袌?。預(yù)測性維護(hù)在不久的未來將愈加凸顯工業(yè)物聯(lián)網(wǎng)中關(guān)鍵的應(yīng)用優(yōu)勢,市場規(guī)模及需求將快速增長工業(yè)設(shè)備的預(yù)測性維護(hù)的市場需求顯而易見。預(yù)防性維護(hù)想要產(chǎn)生業(yè)務(wù)價(jià)值、真正大規(guī)模發(fā)展卻是遇到了兩個(gè)難題。首先項(xiàng)目實(shí)施成本過高,硬件設(shè)備大多依賴進(jìn)口。比如數(shù)采傳感器、設(shè)備等。這導(dǎo)致很多企業(yè)在考慮投入產(chǎn)出比時(shí)比較猶豫。其次是技術(shù)需要突破,目前大多數(shù)供應(yīng)商只實(shí)現(xiàn)了設(shè)備狀態(tài)的監(jiān)視,真正能實(shí)現(xiàn)故障準(zhǔn)確預(yù)測的落地案例寥寥無幾。供應(yīng)商技術(shù)和能力還需要不斷升級。預(yù)防性維護(hù)要想實(shí)現(xiàn)更好的應(yīng)用,要在以下方面實(shí)現(xiàn)突破。實(shí)現(xiàn)基于預(yù)測的維護(hù),提升故障診斷及預(yù)測的準(zhǔn)確率提高軟硬件產(chǎn)品國產(chǎn)化率,降低實(shí)施成本。常州EOL監(jiān)測技術(shù)