基于交流電機的特征量:通過故障機理的分析可知,交流電機運行過程中,其故障與否必然表現(xiàn)為一些特征參量的變化,根據(jù)診斷需要,選擇有代表性的特征參量為該設備在線監(jiān)測的被測信號,準確地提取這些故障特征量,這是故障診斷的關鍵。故障特征量,特別是反映早期故障征兆的信號往往比較弱,而相應的背景噪聲比較弱,常規(guī)的監(jiān)測方法,因受傳感器的準確性、微處理器的速度、A/D轉(zhuǎn)換的分辨率與轉(zhuǎn)換速度等硬件條件的限制,以及一般的數(shù)據(jù)處理方式的不足,很難滿足提取這些特征量的要求,需要采用一些特殊的電工測量手段與信號處理方法。例如小波變換原理的應用。電機故障的現(xiàn)代分析方法:基于信號變換的診斷方法電機設備的許多故障信息是以調(diào)制的形式存在于所監(jiān)測的電氣信號及振動信號之中,如果借助于某種變換對這些信號進行解調(diào)處理,就能方便地獲得故障特征信息,以確定電機設備所發(fā)生的故障類型。常用的信號變換方法有希爾伯特變換和小波變換。盈蓓德科技順應行業(yè)發(fā)展方向,搭建一套基于旋轉(zhuǎn)類設備溫度,振動狀態(tài)監(jiān)測、故障判斷和預測性維護系統(tǒng)。杭州研發(fā)監(jiān)測介紹
工業(yè)設備的預測性維護的市場需求顯而易見。但是預防性維護想要產(chǎn)生業(yè)務價值、真正大規(guī)模發(fā)展卻是遇到了兩個難題。首先項目實施成本過高,硬件設備大多依賴進口。比如數(shù)采傳感器、設備等。這導致很多企業(yè)在考慮投入產(chǎn)出比時比較猶豫。其次是技術需要突破,目前大多數(shù)供應商只實現(xiàn)了設備狀態(tài)的監(jiān)視,真正能實現(xiàn)故障準確預測的落地案例寥寥無幾。供應商技術和能力還需要不斷升級。預防性維護要想實現(xiàn)更好的應用,要在以下方面實現(xiàn)突破。實現(xiàn)基于預測的維護,提升故障診斷及預測的準確率提高軟硬件產(chǎn)品國產(chǎn)化率,大幅度降低實施成本。常州非標監(jiān)測技術設備的故障監(jiān)測診斷技術是利用科學的檢測方法和現(xiàn)代化技術手段,對設備目前的運行狀態(tài)進行監(jiān)測和排查。
柴油機狀態(tài)監(jiān)測與故障診斷系統(tǒng)是一個集數(shù)據(jù)采集與分析、狀態(tài)監(jiān)測、故障診斷為一體的多任務處理系統(tǒng), 可實現(xiàn)柴油機監(jiān)測、保護、分析、診斷等功能。包括數(shù)據(jù)采集與工況監(jiān)測、活塞缸套磨損監(jiān)測分析、主軸承磨損狀態(tài)監(jiān)測分析、氣閥間隙異常監(jiān)測分析和瞬時轉(zhuǎn)速監(jiān)測分析等各種功能。信號分析、特征提取及診斷原理是每個監(jiān)測診斷子功能的部分, 各子功能都有相應的信號分析與特征提取方法, 包括信號預處理、時域、頻域分析、小波分析等, 自動形成反映柴油機運行狀態(tài)的特征量, 為系統(tǒng)的診斷推理提供信息來源。采用模糊聚類理論來檢驗特征參量的有效性、建立故障標準征兆群, 并運用模糊貼近度來實施故障類型的診斷識別。
刀具監(jiān)測主要采用人工、離線和在線檢測三種策略。人工檢測是指工人在加工過程中可以憑經(jīng)驗檢查刀具的狀態(tài);離線檢測是在加工前專門對刀具進行檢測,預測其壽命,看是否能勝任當前的加工;在線檢測又稱實時檢測、監(jiān)測,是在加工過程中對刀具進行實時檢測,并根據(jù)檢測結果做出相應的處理。目前刀具檢測的算法有很多,有的是利用理論計算刀具上應力的變化來判斷刀具的損傷.有的是利用時間序列分析來檢測刀具,有的是利用神經(jīng)網(wǎng)絡技術來檢測刀具。還有的是利用小波變換理論和神經(jīng)網(wǎng)絡技術來檢測刀具,但都是以理論為主??紤]到刀具的塑性損傷在數(shù)控加工中很少發(fā)生,磨損對數(shù)控加工的安全性影響很小,并且可以通過離線檢測進行加工,通過在線檢測,可以判斷微裂紋在當前載荷條件下是否會擴展。如果有可能擴大,我們認為載荷是危險的,通過減少刀具的進給量來減少刀具上的載荷,以保證刀具的安全性。監(jiān)測系統(tǒng)可以實時采集旋轉(zhuǎn)設備的運行狀態(tài)數(shù)據(jù),上傳到云平臺進行直觀展示、預警報警、趨勢分析。
作為工業(yè)領域的一種關鍵旋轉(zhuǎn)設備,對于終端用來說,關于電機維護的主要是電氣班組的設備工程師、電機維護工程師、電機檢修人員等;對于電機廠家以及電機經(jīng)銷商來說,主要是電機售后服務工程師、電機銷售人員,會涉及到電機的運行維護;險此之外,還有第三方檢修人員等。目前已經(jīng)有很多智能產(chǎn)品號稱可以實現(xiàn)電機的預測性維護,但問題也非常多。1)傳感器安裝難。設備狀態(tài)監(jiān)測需要振動、噪聲、溫度傳感器,通訊協(xié)議并不統(tǒng)一,自成體系,安裝、使用、維護成本高昂。2)技術成本高。工業(yè)場景設備類型多,運行工況復雜,預測性維護算法涉及數(shù)據(jù)預處理、工業(yè)機理、機器學習,技術要求很高。3)時間成本高。預測性維護要實現(xiàn),前期需要大量歷史數(shù)據(jù)的支撐,數(shù)據(jù)采集、歸納、分析是一個漫長的過程。的電機智能運維,雖然被各大宣傳媒體提得很多,但還遠遠未到落地很好乃至普及的程度,不論是預測性維護的預測效果,還是電機的智能運維的市場推廣以及市場接受程度,對于電機運維來說,都還有很遠的一段距離!盈蓓德科技可以搭建造價低廉,性能穩(wěn)定,安裝方便,功能實用,使用簡單,易維護的振動監(jiān)測系統(tǒng)。研發(fā)監(jiān)測應用
設備狀態(tài)監(jiān)測診斷分析系統(tǒng)實現(xiàn)大型旋轉(zhuǎn)設備參數(shù)狀態(tài)監(jiān)測、統(tǒng)計分析、預警報警、多維診斷和智能巡檢等功能。杭州研發(fā)監(jiān)測介紹
基于人工神經(jīng)網(wǎng)絡的診斷方法簡單處理各單元連接而成的復雜的非線性系統(tǒng),具有學習能力,自適應能力,非線性逼近能力等。故障診斷的任務從映射角度看就是從征兆到故障類型的映射。用ANN技術處理故障診斷問題,不僅能進行復雜故障診斷模式的識別,還能進行故障嚴重性評估和故障預測,由于ANN能自動獲取診斷知識,使診斷系統(tǒng)具有自適應能力?;诩尚椭悄芟到y(tǒng)的診斷方法隨著電機設備系統(tǒng)越來越復雜,依靠單一的故障診斷技術已難滿足復雜電機設備的故障診斷要求,因此上述各種診斷技術集成起來形成的集成智能診斷系統(tǒng)成為當前電機設備故障診斷研究的熱點。主要的集成技術有:基于規(guī)則的**系統(tǒng)與ANN的結合,模糊邏輯與ANN的結合,混沌理論與ANN的結合,模糊神經(jīng)網(wǎng)絡與**系統(tǒng)的結合。杭州研發(fā)監(jiān)測介紹