凌越通信中繼設(shè)備方案行情
上海對(duì)講機(jī)公司批發(fā)凌越通信供
對(duì)講機(jī)常見故障問題與解決方法
對(duì)講機(jī)常見故障問題與解決方法,上海凌越實(shí)業(yè)有限公
2019中國(guó)無線電大會(huì)即將在北京舉辦
您是HAM里的哪一族?
如何有效的管理弱電工程施工進(jìn)度?
對(duì)講機(jī)的IP防護(hù)等級(jí)
2019年世界電信和信息社會(huì)日大會(huì)在京召開
中國(guó)決定自6月1日起對(duì)原產(chǎn)于美國(guó)的對(duì)講機(jī) 、對(duì)講機(jī)
通過對(duì)電機(jī)部分放電、振動(dòng)、電流特征分析、磁通量和磁芯完整性的在線監(jiān)測(cè)和離線檢測(cè),為電機(jī)轉(zhuǎn)子和定子繞組的狀態(tài)維修提供信息。通過監(jiān)測(cè)電機(jī)的電流、電壓信號(hào),在自身內(nèi)部建立數(shù)學(xué)模型,對(duì)被監(jiān)電機(jī)進(jìn)行自我學(xué)習(xí),完成學(xué)習(xí)后開始進(jìn)行監(jiān)測(cè)。通過將測(cè)量電流與數(shù)學(xué)模型計(jì)算所得電流進(jìn)行差分比較,得到一組數(shù)值,再將該數(shù)值通過傅里葉分析,得到一個(gè)功率譜密度圖。功率頻譜圖中,各頻率段的突加分量**不同的故障類型,**終給出報(bào)告,告知維修團(tuán)隊(duì)?wèi)?yīng)該在接下來多久時(shí)間內(nèi)需對(duì)該故障進(jìn)行處理。維修團(tuán)隊(duì)根據(jù)報(bào)告,按實(shí)際情況采購(gòu)備件、排產(chǎn)、計(jì)劃停機(jī)維修,比較低限度的減少了設(shè)備停機(jī)時(shí)間,降低了非計(jì)劃性停機(jī)帶來的損失。 盈蓓德科技順應(yīng)行業(yè)發(fā)展趨勢(shì),搭建了一套基于旋轉(zhuǎn)類設(shè)備溫度,振動(dòng)狀態(tài)監(jiān)測(cè)、故障判斷和預(yù)測(cè)性維護(hù)系統(tǒng)。紹興發(fā)動(dòng)機(jī)監(jiān)測(cè)介紹
電動(dòng)機(jī)是機(jī)械加工中不可或缺的必備工具,電動(dòng)機(jī)在運(yùn)轉(zhuǎn)中常產(chǎn)生各種故障,為保證電動(dòng)機(jī)運(yùn)行安全,對(duì)電動(dòng)機(jī)運(yùn)行狀態(tài)進(jìn)行在線監(jiān)測(cè)尤為重要。以三相異步電動(dòng)機(jī)為研究對(duì)象,采用傳感器獲取電動(dòng)機(jī)運(yùn)行中的重要參數(shù)(振動(dòng)、噪聲、轉(zhuǎn)速及溫度等),由時(shí)/頻域分析及能量分析等方法提取電動(dòng)機(jī)運(yùn)行特征量,構(gòu)成特征向量,采用BP神經(jīng)網(wǎng)絡(luò)訓(xùn)練的方法建立狀態(tài)識(shí)別模型,通過BP神經(jīng)網(wǎng)絡(luò)模式識(shí)別方法,判斷電動(dòng)機(jī)運(yùn)行的狀態(tài),在此基礎(chǔ)上,利用Lab VIEW軟件構(gòu)建可視化監(jiān)測(cè)系統(tǒng),將電動(dòng)機(jī)運(yùn)行參數(shù)及狀態(tài)實(shí)時(shí)顯示在可視化界面中,完成在線智能監(jiān)測(cè)。常州功能監(jiān)測(cè)公司振動(dòng)檢測(cè)儀應(yīng)用于設(shè)備狀態(tài)監(jiān)測(cè),在設(shè)備預(yù)知維修中起到了重要的作用。
工業(yè)設(shè)備的預(yù)測(cè)性維護(hù)的市場(chǎng)需求顯而易見。但是預(yù)防性維護(hù)想要產(chǎn)生業(yè)務(wù)價(jià)值、真正大規(guī)模發(fā)展卻是遇到了兩個(gè)難題。首先項(xiàng)目實(shí)施成本過高,硬件設(shè)備大多依賴進(jìn)口。比如數(shù)采傳感器、設(shè)備等。這導(dǎo)致很多企業(yè)在考慮投入產(chǎn)出比時(shí)比較猶豫。其次是技術(shù)需要突破,目前大多數(shù)供應(yīng)商只實(shí)現(xiàn)了設(shè)備狀態(tài)的監(jiān)視,真正能實(shí)現(xiàn)故障準(zhǔn)確預(yù)測(cè)的落地案例寥寥無幾。供應(yīng)商技術(shù)和能力還需要不斷升級(jí)。預(yù)防性維護(hù)要想實(shí)現(xiàn)更好的應(yīng)用,要在以下方面實(shí)現(xiàn)突破。實(shí)現(xiàn)基于預(yù)測(cè)的維護(hù),提升故障診斷及預(yù)測(cè)的準(zhǔn)確率提高軟硬件產(chǎn)品國(guó)產(chǎn)化率,降低實(shí)施成本。
基于數(shù)據(jù)的故障檢測(cè)與診斷方法能夠?qū)A康墓I(yè)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析和特征提取,將系統(tǒng)的狀態(tài)分為正常運(yùn)行狀態(tài)和故障狀態(tài),可視為模式識(shí)別任務(wù)。故障檢測(cè)是判斷系統(tǒng)是否處于預(yù)期的正常運(yùn)行狀態(tài),判斷系統(tǒng)是否發(fā)生異常故障,相當(dāng)于一個(gè)二分類任務(wù)。故障診斷是在確定發(fā)生故障的時(shí)候判斷系統(tǒng)處于哪一種故障狀態(tài),相當(dāng)于一個(gè)多分類任務(wù)。因此,故障檢測(cè)和診斷技術(shù)的研究類似于模式識(shí)別,分為4個(gè)的步驟:數(shù)據(jù)獲取、特征提取、特征選擇和特征分類。1)數(shù)據(jù)獲取步驟是從過程系統(tǒng)收集可能影響過程狀態(tài)的信號(hào),包括溫度、流量等過程變量;2)特征提取步驟是將采集的原始信號(hào)映射為有辨識(shí)度的系統(tǒng)狀態(tài)信息;3)特征選擇步驟是將與狀態(tài)變化相關(guān)的變量提取出來;4)特征分類步驟是通過算法將前幾步中選擇的特征進(jìn)行故障檢測(cè)與診斷。在大數(shù)據(jù)這一背景下,傳統(tǒng)的基于數(shù)據(jù)的故障檢測(cè)與診斷方法被廣泛應(yīng)用,但是,這些方法有一些共同的缺點(diǎn):特征提取需要大量的**知識(shí)和信號(hào)處理技術(shù),并且對(duì)于不同的任務(wù),沒有統(tǒng)一的程序來完成。此外,常規(guī)的基于機(jī)器學(xué)習(xí)的方法結(jié)構(gòu)較淺,在提取信號(hào)的高維非線性關(guān)系方面能力有限。滾動(dòng)軸承是一個(gè)故障多發(fā)的零件,需要對(duì)其進(jìn)行電機(jī)狀態(tài)監(jiān)測(cè)與故障診斷。
故障預(yù)測(cè)與健康管理是以工業(yè)監(jiān)測(cè)數(shù)據(jù)為基礎(chǔ),通過高等數(shù)學(xué)、數(shù)學(xué)優(yōu)化、統(tǒng)計(jì)概率、信號(hào)處理、機(jī)器學(xué)習(xí)和統(tǒng)計(jì)學(xué)習(xí)等技術(shù)搭建模型算法,**終實(shí)現(xiàn)產(chǎn)品和裝備的狀態(tài)監(jiān)測(cè)、故障診斷及壽命預(yù)測(cè),為產(chǎn)品和裝備的正常運(yùn)行保駕護(hù)航,從而提高其安全性和可靠性。故障預(yù)測(cè)與健康管理是以工業(yè)監(jiān)測(cè)數(shù)據(jù)為基礎(chǔ),通過高等數(shù)學(xué)、數(shù)學(xué)優(yōu)化、統(tǒng)計(jì)概率、信號(hào)處理、機(jī)器學(xué)習(xí)和統(tǒng)計(jì)學(xué)習(xí)等技術(shù)搭建模型算法,**終實(shí)現(xiàn)產(chǎn)品和裝備的狀態(tài)監(jiān)測(cè)、故障診斷及壽命預(yù)測(cè),為產(chǎn)品和裝備的正常運(yùn)行保駕護(hù)航,從而提高其安全性和可靠性。近年來我們提出的標(biāo)準(zhǔn)化平方包絡(luò)和數(shù)學(xué)框架以及準(zhǔn)算數(shù)均值比數(shù)學(xué)框架指引了稀疏測(cè)度構(gòu)造的新方向,同時(shí)發(fā)現(xiàn)了大量與基尼指數(shù)、峭度、香農(nóng)熵等具有等價(jià)性能的稀疏測(cè)度?;跇?biāo)準(zhǔn)化平方包絡(luò)和數(shù)學(xué)框架以及凸優(yōu)化技術(shù),提出了在線更新模型權(quán)重可解釋的機(jī)器學(xué)習(xí)算法,**終可以利用模型權(quán)重來實(shí)時(shí)確認(rèn)故障特征頻率,解決了狀態(tài)監(jiān)測(cè)與故障診斷領(lǐng)域傳統(tǒng)機(jī)器學(xué)習(xí)只能輸出狀態(tài),而無法提供故障特征來確認(rèn)輸出狀態(tài)的難題。電機(jī)的狀態(tài)監(jiān)測(cè),以采集的電機(jī)電流和振動(dòng)信號(hào)為例,可以采用多特征融合的故障診斷方法。常州耐久監(jiān)測(cè)公司
盈蓓德科技開發(fā)的監(jiān)測(cè)系統(tǒng)實(shí)現(xiàn)了對(duì)電動(dòng)機(jī)(馬達(dá))、減速機(jī)等旋轉(zhuǎn)設(shè)備關(guān)鍵參數(shù)實(shí)時(shí)監(jiān)測(cè),掌握設(shè)備運(yùn)行狀態(tài)。紹興發(fā)動(dòng)機(jī)監(jiān)測(cè)介紹
刀具監(jiān)測(cè)管理系統(tǒng)是我們基于精密加工行業(yè)特征,結(jié)合加工中心、車床等機(jī)械加工過程,打造的一款刀具狀態(tài)監(jiān)測(cè)和壽命預(yù)測(cè)分析系統(tǒng),通過采集主軸電流(負(fù)載)信號(hào)、位置信號(hào)、速度信號(hào)等30維度+數(shù)據(jù)信號(hào),結(jié)合大數(shù)據(jù)流式處理、自然語言處理等自學(xué)習(xí)處理算法和行業(yè)多年經(jīng)驗(yàn)數(shù)據(jù)沉淀,構(gòu)建的一套完整的刀具壽命預(yù)測(cè)和狀態(tài)監(jiān)控管理系統(tǒng),能夠?qū)崿F(xiàn)100%斷刀和崩刃監(jiān)控,磨損監(jiān)控識(shí)別率達(dá)到99%以上,同時(shí),提供基于刀具狀態(tài)監(jiān)測(cè)和壽命預(yù)測(cè)的異常停機(jī)控制模塊,避免因刀具異常導(dǎo)致的產(chǎn)品質(zhì)量損失和異常撞機(jī)事故,幫助用戶節(jié)約刀具成本30%以上,100%避免刀具異常帶來的產(chǎn)品質(zhì)量損失,為用戶提供無憂機(jī)加工過程管理!紹興發(fā)動(dòng)機(jī)監(jiān)測(cè)介紹
上海盈蓓德智能科技有限公司是以智能在線監(jiān)診系統(tǒng),西門子Anovis,聲音與振動(dòng)分析,主動(dòng)減振降噪系統(tǒng)研發(fā)、生產(chǎn)、銷售、服務(wù)為一體的從事智能科技、電子科技、計(jì)算機(jī)科技領(lǐng)域內(nèi)的技術(shù)開發(fā)、技術(shù)服務(wù)、技術(shù)咨詢、技術(shù)轉(zhuǎn)讓,計(jì)算機(jī)網(wǎng)絡(luò)工程,計(jì)算機(jī)硬件開發(fā),電子產(chǎn)品、計(jì)算機(jī)軟硬件、辦公設(shè)備、機(jī)械設(shè)備(除特種設(shè)備)銷售?!疽婪毥?jīng)批準(zhǔn)的項(xiàng)目,經(jīng)相關(guān)部門批準(zhǔn)后方可開展經(jīng)營(yíng)活動(dòng)】企業(yè),公司成立于2019-01-02,地址在上海市閔行區(qū)新龍路1333號(hào)28幢328室。至創(chuàng)始至今,公司已經(jīng)頗有規(guī)模。本公司主要從事智能在線監(jiān)診系統(tǒng),西門子Anovis,聲音與振動(dòng)分析,主動(dòng)減振降噪系統(tǒng)領(lǐng)域內(nèi)的智能在線監(jiān)診系統(tǒng),西門子Anovis,聲音與振動(dòng)分析,主動(dòng)減振降噪系統(tǒng)等產(chǎn)品的研究開發(fā)。擁有一支研發(fā)能力強(qiáng)、成果豐碩的技術(shù)隊(duì)伍。公司先后與行業(yè)上游與下游企業(yè)建立了長(zhǎng)期合作的關(guān)系。盈蓓德,西門子致力于開拓國(guó)內(nèi)市場(chǎng),與電工電氣行業(yè)內(nèi)企業(yè)建立長(zhǎng)期穩(wěn)定的伙伴關(guān)系,公司以產(chǎn)品質(zhì)量及良好的售后服務(wù),獲得客戶及業(yè)內(nèi)的一致好評(píng)。我們本著客戶滿意的原則為客戶提供智能在線監(jiān)診系統(tǒng),西門子Anovis,聲音與振動(dòng)分析,主動(dòng)減振降噪系統(tǒng)產(chǎn)品售前服務(wù),為客戶提供周到的售后服務(wù)。價(jià)格低廉優(yōu)惠,服務(wù)周到,歡迎您的來電!