多光子顯微鏡的前景巨大作為一個多學科交叉、知識密集、資金密集的高技術(shù)產(chǎn)業(yè),多光子顯微鏡涉及醫(yī)學、生物學、化學、物理學、電子學、工程學等學科,生產(chǎn)工藝相對復雜,進入門檻較高,是衡量一個國家制造業(yè)和高科技發(fā)展水平的重要標準之一。過去的5年,多光子顯微鏡市場集中,由于投產(chǎn)生產(chǎn)的成本較高,技術(shù)難度大,目前涌現(xiàn)的新企業(yè)不多。顯微鏡作為一個傳統(tǒng)的高科技行業(yè),其作用至今沒有被其他技術(shù)顛覆,只是不斷融合并發(fā)展相關(guān)技術(shù),在醫(yī)療和其他精密檢測領(lǐng)域發(fā)揮著更大的作用。顯微鏡的商業(yè)化發(fā)展已進入成熟期,主要需求來自教學、生命科學的研究及精密檢測等,全球市場呈現(xiàn)平緩的增長態(tài)勢。然而,**、、顯微鏡產(chǎn)品(如多光子顯微鏡、電子顯微鏡)正拉動市場需求,多光子顯微鏡市場發(fā)展?jié)摿薮?。多光子顯微鏡的發(fā)展現(xiàn)狀及未來發(fā)展趨勢。美國離體多光子顯微鏡成像分辨率
隨著現(xiàn)代分子生物學技術(shù)的快速發(fā)展和科學技術(shù)的進步,特別是后基因組時代的到來,人們已經(jīng)能夠根據(jù)需要建立各種細胞模型,這為在體內(nèi)研究基因表達、分子間相互作用、細胞增殖、細胞信號轉(zhuǎn)導、誘導分化、細胞凋亡和新生血管生成提供了良好的生物學條件。然而,盡管利用現(xiàn)有的分子生物學方法對基因表達與蛋白質(zhì)的相互作用進行了深入細致的研究,但仍然無法實現(xiàn)對蛋白質(zhì)和基因活性的實時動態(tài)監(jiān)測。在細胞的生理過程中,基因尤其是蛋白質(zhì)的表達、修飾和相互作用往往是可逆的、動態(tài)變化的。目前,分子生物學方法無法捕捉到蛋白質(zhì)和基因的這些變化,但獲得這些信息對于研究基因表達與蛋白質(zhì)的相互作用非常重要。因此,有必要發(fā)展一種動態(tài)、實時、連續(xù)監(jiān)測蛋白質(zhì)和基因活性的方法。激光掃描多光子顯微鏡數(shù)據(jù)分析多光子顯微鏡,助力科研人員深入探索生命科學的奧秘。
有許多方法可以實現(xiàn)快速光柵掃描,例如使用振鏡進行快速2D掃描,以及將振鏡與可調(diào)電動透鏡相結(jié)合進行快速3D掃描。而可調(diào)電動式鏡頭由于機械慣性的限制,無法在軸向快速切換焦點,影響成像速度。現(xiàn)在它可以被空間光調(diào)制器(SLM)取代。遠程對焦也是實現(xiàn)3D成像的一種手段,如圖2所示。LSU模塊中,掃描振鏡水平掃描,ASU模塊包括物鏡L1和反射鏡M,通過調(diào)整M的位置實現(xiàn)軸向掃描該技術(shù)不僅可以校正主物鏡L2引入的光學像差,還可以進行快速軸向掃描。為了獲得更多的神經(jīng)元成像,可以通過調(diào)整顯微鏡的物鏡設計來放大FOV。然而,大NA和大FOV的物鏡通常很重,不能快速移動以進行快速軸向掃描,因此大FOV系統(tǒng)依賴于遠程聚焦、SLM和可調(diào)電動透鏡。
使用基因編碼的熒光探針可以在突觸和細胞分辨率下監(jiān)測體內(nèi)神經(jīng)元信號,這是揭示動物神經(jīng)活動復雜機制的關(guān)鍵。使用雙光子顯微鏡(2PM)可以以亞細胞分辨率對鈣離子傳感器和谷氨酸傳感器成像,從而測量不透明大腦深處的活動;成像膜電壓變化能直接反映神經(jīng)元活動,但神經(jīng)元活動的速度對于常規(guī)的2PM來說太快。目前電壓成像主要通過寬場顯微鏡實現(xiàn),但它的空間分辨率較差并且于淺層深度。因此要在不透明的大腦中以高空間分辨率對膜電壓變化進行成像,需要明顯提高2PM的成像速率。多光子顯微鏡將生物打印結(jié)構(gòu)準確定位和定向到特定的解剖部位,使其能夠在小鼠組織內(nèi)制造復雜結(jié)構(gòu)。
當激光光束焦點的位置在鏡面上,此時被反射的激光在無限空間中成為準直光束,并在OBJ2的焦平面上形成了一個激光光斑。同理,如果橫向掃描光束,則會形成遠離傾斜鏡鏡面的焦點,這又導致返回的光束會聚或發(fā)散,進而OBJ2能在軸向不同位置形成焦點,通過這種方式即能實現(xiàn)連續(xù)的軸向掃描。對于較小的傾斜角,聚焦沒有球差。該組在實驗中表征了這種將橫向掃描轉(zhuǎn)換為軸向掃描技術(shù)的光學性能,并使用它將光片顯微鏡的成像速度提升了一個數(shù)量級,從而可以在三個維度上量化快速的囊泡動力學。該組還演示了使用雙光子光柵掃描顯微鏡以12kHz進行共振遠程聚焦,該技術(shù)可對大腦組織和斑馬魚心臟動力學進行快速成像,并具有衍射極限的分辨率。多光子顯微鏡的大多數(shù)補償器都采用棱鏡。美國離體多光子顯微鏡成像分辨率
目前中國顯微鏡中如多光子顯微鏡、共聚焦掃描和電子顯微鏡等。美國離體多光子顯微鏡成像分辨率
Ca2+是重要的第二信使,對于調(diào)節(jié)細胞的生理反應具有極其重要的作用,開發(fā)和利用雙光子熒光顯微成像技術(shù)對Ca2+熒光信號進行觀測,可以從某些方面對有機體或細胞的變化機制進行分析,具有重要的意義。利用雙光子熒光顯微成像技術(shù)可以觀察細胞內(nèi)用熒光探針標記的Ca2*的時間和空間的熒光圖像的變化,還可以觀察細胞某一層面或局部的(Ca2+)熒光圖像和變化。通過對單細胞的研究發(fā)現(xiàn),Ca2+不僅在細胞局部區(qū)域間的分布是不均勻的,而且細胞內(nèi)各局部區(qū)域的不同深度或?qū)哟伍g也存在不同程度的Ca2+梯差即所謂的空間Ca2梯差。美國離體多光子顯微鏡成像分辨率