Ultima Investigator多光子顯微鏡長(zhǎng)時(shí)間觀察

來源: 發(fā)布時(shí)間:2023-11-05

現(xiàn)代分子生物學(xué)技術(shù)的迅速發(fā)展和科技的進(jìn)步,特別是隨著后基因組時(shí)代的到來,人們已經(jīng)能夠根據(jù)需要建立各種細(xì)胞模型,為在體研究基因表達(dá)規(guī)律、分子間的相互作用、細(xì)胞的增殖、細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)、誘導(dǎo)分化、細(xì)胞凋亡以及新的血管生成等提供了良好的生物學(xué)條件。然而,盡管人們利用現(xiàn)有的分子生物學(xué)方法,已經(jīng)對(duì)基因表達(dá)和蛋白質(zhì)之間的相互作用進(jìn)行了深入、細(xì)致的研究,但仍然不能實(shí)現(xiàn)對(duì)蛋白質(zhì)和基因活動(dòng)的實(shí)時(shí)、動(dòng)態(tài)監(jiān)測(cè)。在細(xì)胞的生理過程中,基因、尤其是蛋白質(zhì)的表達(dá)、修飾和相萬(wàn)作用往往發(fā)生可逆的、動(dòng)態(tài)的變化。目前的分子生物學(xué)方法還不能捕獲到蛋白質(zhì)和基因的這些變化,但獲取這些信息對(duì)與研究基因的表達(dá)和蛋白質(zhì)之間的相互作用又至關(guān)重要。因此,發(fā)展能用于、動(dòng)態(tài)、實(shí)時(shí)、連續(xù)監(jiān)測(cè)蛋白質(zhì)和基因活動(dòng)的方法是非常有必要的。實(shí)現(xiàn)細(xì)胞層面觀察,多光子顯微鏡技術(shù)助力醫(yī)學(xué)突破。Ultima Investigator多光子顯微鏡長(zhǎng)時(shí)間觀察

Ultima Investigator多光子顯微鏡長(zhǎng)時(shí)間觀察,多光子顯微鏡

對(duì)于雙光子(2P)成像,散焦和近表面熒光激發(fā)是兩個(gè)相對(duì)較大的深度限制因素,而對(duì)于三光子(3P)成像,這兩個(gè)問題**減少。  然而,由于熒光團(tuán)的吸收截面遠(yuǎn)小于2P,三光子成像需要更高的脈沖能量才能獲得與2P相同激發(fā)強(qiáng)度的熒光信號(hào)。  功能性3P顯微鏡比結(jié)構(gòu)性3P顯微鏡要求更高,后者需要更快的掃描速度以便及時(shí)采樣神經(jīng)元活動(dòng)。  為了在每個(gè)像素的停留時(shí)間內(nèi)收集足夠的信號(hào),需要更高的脈沖能量。  復(fù)雜的行為通常涉及大規(guī)模的大腦神經(jīng)網(wǎng)絡(luò),這些網(wǎng)絡(luò)既有本地連接,也有遠(yuǎn)程連接。  為了將神經(jīng)元的活動(dòng)與行為聯(lián)系起來,需要同時(shí)監(jiān)測(cè)* * *分布的超大型神經(jīng)元的活動(dòng)。  大腦中的神經(jīng)網(wǎng)絡(luò)將在幾十毫秒內(nèi)處理輸入的刺激。  為了理解這種快速神經(jīng)元?jiǎng)恿W(xué),MPM需要快速成像神經(jīng)元的能力。  快速M(fèi)PM方法可分為單束掃描技術(shù)和多束掃描技術(shù)。  清醒動(dòng)物多光子顯微鏡研究高能短脈沖激光,多光子顯微鏡實(shí)現(xiàn)超快、超高清成像速度。

Ultima Investigator多光子顯微鏡長(zhǎng)時(shí)間觀察,多光子顯微鏡

多束掃描技術(shù)可以同時(shí)對(duì)神經(jīng)元組織的不同位置進(jìn)行成像。該技術(shù):對(duì)于兩個(gè)遠(yuǎn)程成像位置(相距1-2mm以上),通常采用兩個(gè)**的路徑進(jìn)行成像;對(duì)于相鄰區(qū)域,通常使用單個(gè)物鏡的多個(gè)光束進(jìn)行成像。多光束掃描技術(shù)必須特別注意激發(fā)光束之間的串?dāng)_,這可以通過事后光源分離或時(shí)空復(fù)用來解決。事后光源分離法是指分離光束以消除串?dāng)_的算法;時(shí)空復(fù)用法是指同時(shí)使用多個(gè)激發(fā)光束,每個(gè)光束的脈沖在時(shí)間上被延遲,使不同光束激發(fā)的單個(gè)熒光信號(hào)可以暫時(shí)分離。引入的光束越多,可以成像的神經(jīng)元越多,但多束會(huì)導(dǎo)致熒光衰減時(shí)間重疊增加,從而限制了分辨信號(hào)源的能力;并且復(fù)用對(duì)電子設(shè)備的工作速度要求很高;大量的光束也需要較高的激光功率來維持單束的信噪比,這樣容易導(dǎo)致組織損傷。

Ca2+是一種重要的第二信使,在調(diào)節(jié)細(xì)胞生理反應(yīng)中起著重要作用。發(fā)展和利用雙光子熒光顯微成像技術(shù)觀測(cè)Ca2+熒光信號(hào),可以從某些方面分析生物體或細(xì)胞的變化機(jī)制,具有重要意義。利用雙光子熒光顯微成像技術(shù),我們可以觀察到細(xì)胞內(nèi)熒光探針標(biāo)記的Ca2*的時(shí)間和空間熒光圖像的變化,也可以觀察到一定水平或部分細(xì)胞內(nèi)(Ca2+)的熒光圖像和變化。通過對(duì)單個(gè)細(xì)胞的研究發(fā)現(xiàn),Ca2+的分布不僅在細(xì)胞的局部區(qū)域之間是不均勻的,而且在細(xì)胞內(nèi)不同深度或?qū)哟蔚木植繀^(qū)域之間也存在不同程度的Ca2+梯度,稱為空間Ca2+梯度。中國(guó)市場(chǎng)多光子顯微鏡進(jìn)出口貿(mào)易趨勢(shì)。

Ultima Investigator多光子顯微鏡長(zhǎng)時(shí)間觀察,多光子顯微鏡

多光子顯微鏡對(duì)成像深度的改善利用紅光或紅外光激發(fā),光散射?。ㄐ×W拥纳⑸渑c波長(zhǎng)的四次方的成反比)。不需要***,能更多收集來自成像截面的散射光子。***不能區(qū)分由離焦區(qū)域或焦點(diǎn)區(qū)發(fā)射出的散射光子,多光子在深層成像信噪比好。單光子激發(fā)所用的紫外或可見光在光束到達(dá)焦平面之前易被樣品吸收而衰減,不易對(duì)深層激發(fā)。多光子熒光成像的特點(diǎn)。深度成像∶與共聚焦相比能更好地對(duì)厚散射物質(zhì)成像。信噪比∶多光子吸收采用的波長(zhǎng)是單光子吸收的2倍以上,所以顯微試樣中的瑞利散射更小,熒光測(cè)定的信噪比更高。觀察活細(xì)胞∶離子測(cè)量(i.e.Ca2+),GFP,發(fā)育生物學(xué)等—減少了光毒性和光漂白,能對(duì)細(xì)胞長(zhǎng)時(shí)間觀察。4tune光譜檢測(cè)器,實(shí)現(xiàn)多光子顯微鏡的光譜型檢測(cè)。進(jìn)口多光子顯微鏡單分子成像定位

點(diǎn)掃描多光子顯微鏡可以深入樣本并捕捉高質(zhì)量的圖像,但這個(gè)過程極其緩慢,因?yàn)閳D像是一次形成一個(gè)點(diǎn)。Ultima Investigator多光子顯微鏡長(zhǎng)時(shí)間觀察

對(duì)于雙光子成像而言,離焦和近表面熒光激發(fā)是兩個(gè)比較大的深度限制因素,而對(duì)于三光子(3P)成像這兩個(gè)問題大大減小,但是三光子成像由于熒光團(tuán)的吸收截面比2P要小得多,所以需要更高數(shù)量級(jí)的脈沖能量才能獲得與2P激發(fā)的相同強(qiáng)度的熒光信號(hào)。功能性3P顯微鏡比結(jié)構(gòu)性3P顯微鏡的要求更高,它需要更快速的掃描,以便及時(shí)采樣神經(jīng)元活動(dòng);需要更高的脈沖能量,以便在每個(gè)像素停留時(shí)間內(nèi)收集足夠的信號(hào)。復(fù)雜的行為通常涉及到大型的大腦神經(jīng)網(wǎng)絡(luò),該網(wǎng)絡(luò)既具有局部的連接又具有遠(yuǎn)程的連接。要想將神經(jīng)元活動(dòng)與行為聯(lián)系起來,需要同時(shí)監(jiān)控非常龐大且分布普遍的神經(jīng)元的活動(dòng),大腦中的神經(jīng)網(wǎng)絡(luò)會(huì)在幾十毫秒內(nèi)處理傳入的刺激,要想了解這種快速的神經(jīng)元?jiǎng)恿W(xué),就需要MPM具備對(duì)神經(jīng)元進(jìn)行快速成像的能力??焖費(fèi)PM方法可分為單束掃描技術(shù)和多束掃描技術(shù)。Ultima Investigator多光子顯微鏡長(zhǎng)時(shí)間觀察