碳載體材料的電化學(xué)腐蝕防護(hù)是提升催化劑耐久性的關(guān)鍵。氮摻雜石墨烯通過吡啶氮位點(diǎn)電子結(jié)構(gòu)調(diào)變增強(qiáng)抗氧化能力,邊緣氟化處理形成的C-F鍵可阻隔羥基自由基攻擊。核殼結(jié)構(gòu)載體以碳化硅為核、介孔碳為殼,核層化學(xué)惰性保障結(jié)構(gòu)穩(wěn)定性,殼層高比表面積維持催化活性。碳納米管壁厚通過化學(xué)氣相沉積精確控制,三至五層石墨烯同心圓柱結(jié)構(gòu)兼具導(dǎo)電性與抗體積膨脹能力。表面磺酸基團(tuán)接枝技術(shù)可增強(qiáng)鉑納米顆粒錨定效應(yīng),但需通過孔徑調(diào)控防止離聚物過度滲透覆蓋活性位點(diǎn)。采用核殼結(jié)構(gòu)設(shè)計(jì)與過渡金屬合金化策略,氫燃料電池催化劑材料可暴露高活性晶面并降低貴金屬用量。江蘇燃料電池系統(tǒng)材料原理極端低溫環(huán)境對氫燃料電池材料體系提出特殊要求。質(zhì)子...
固態(tài)儲氫材料開發(fā)需平衡吸附容量與動力學(xué)性能。鎂基材料通過機(jī)械球磨引入過渡金屬催化劑(如Ni、Fe),納米晶界與缺陷位點(diǎn)可加速氫分子解離。金屬有機(jī)框架(MOF)材料通過配體官能化調(diào)控孔徑與表面化學(xué)性質(zhì),羧酸基團(tuán)修飾可增強(qiáng)氫分子吸附焓?;瘜W(xué)氫化物體系(如氨硼烷)需解決副產(chǎn)物不可逆問題,催化劑的納米限域效應(yīng)可提升脫氫反應(yīng)選擇性。復(fù)合儲氫系統(tǒng)通過相變材料與吸附材料的協(xié)同設(shè)計(jì),利用放氫過程的吸熱效應(yīng)實(shí)現(xiàn)自冷卻,抑制局部過熱導(dǎo)致的材料粉化。氫燃料電池電堆異質(zhì)材料界面匹配面臨哪些挑戰(zhàn)?成都氧化鋯材料功率固體氧化物燃料的電池連接體材料的抗氧化涂層技術(shù),決定了長期運(yùn)行的可靠性。鐵素體不銹鋼,通過稀土元素?fù)诫s形成...