Tag標(biāo)簽
  • 北京納米力學(xué)電鍍測(cè)試
    北京納米力學(xué)電鍍測(cè)試

    隨著精密、 超精密加工技術(shù)的發(fā)展,材料在納米尺度下的力學(xué)特性引起了人們的極大關(guān)注研究。而傳統(tǒng)的硬度測(cè)量方法只適于宏觀條件下的研究和應(yīng)用,無(wú)法用于測(cè)量壓痕深度為納米級(jí)或亞微米級(jí)的硬度( 即所謂納米硬度,nano- hardness) 。近年來(lái),測(cè)量納米硬度一般采用新興的納米壓痕技術(shù) (nano-indentation),由于采用納米壓痕技術(shù)可以在極小的尺寸范圍內(nèi)測(cè)試材料的力學(xué)性能,除了塑性性質(zhì)外,還可反映材料的彈性性質(zhì),因此得到了越來(lái)越普遍的應(yīng)用。納米力學(xué)測(cè)試技術(shù)的發(fā)展推動(dòng)了納米材料和納米器件的性能優(yōu)化。北京納米力學(xué)電鍍測(cè)試納米力學(xué)測(cè)試儀,納米力學(xué)測(cè)試儀是用于測(cè)量納米尺度下材料力學(xué)性質(zhì)的專屬設(shè)備...

  • 重慶金屬納米力學(xué)測(cè)試定制
    重慶金屬納米力學(xué)測(cè)試定制

    原位納米片取樣和力學(xué)測(cè)試技術(shù),原位納米片取樣和力學(xué)測(cè)試技術(shù)是一種新興的納米尺度力學(xué)測(cè)試方法,其基本原理是利用優(yōu)化的離子束打造方法,在含有待測(cè)塑料表面的納米區(qū)域內(nèi)制備出超薄的平面固體材料,再對(duì)其進(jìn)行拉伸、扭曲等力學(xué)測(cè)試。相比于傳統(tǒng)的拉伸試驗(yàn)等方法,原位納米片取樣技術(shù)具有更優(yōu)的尺寸控制和納米量級(jí)精度,可以為納米尺度力學(xué)測(cè)試提供更加準(zhǔn)確的數(shù)據(jù)??傊患{米力學(xué)測(cè)量技術(shù)的研究及應(yīng)用是未來(lái)納米材料科學(xué)發(fā)展的重要方向之一,將為納米材料的設(shè)計(jì)、開發(fā)以及工業(yè)應(yīng)用等領(lǐng)域的發(fā)展做出積極貢獻(xiàn)。納米力學(xué)測(cè)試對(duì)于材料科學(xué)研究至關(guān)重要,能夠精確測(cè)量納米尺度下的力學(xué)性質(zhì)。重慶金屬納米力學(xué)測(cè)試定制借助原子力顯微鏡(AFM)...

  • 廣州表面微納米力學(xué)測(cè)試供應(yīng)
    廣州表面微納米力學(xué)測(cè)試供應(yīng)

    特點(diǎn):能同時(shí)實(shí)現(xiàn)SEM/FIB高分辨成像和納米力學(xué)性能測(cè)試,力學(xué)測(cè)量范圍0.5nN-200mN(9個(gè)數(shù)量級(jí)),位移測(cè)量范圍0.05nm-21mm(9個(gè)數(shù)量級(jí)),五軸(X,Y,Z,旋轉(zhuǎn),傾斜)閉環(huán)控制保證樣品和微力傳感探針的精確對(duì)準(zhǔn),能在SEM/FIB較佳工作距離下實(shí)現(xiàn)高分辨成像(可達(dá)4mm)以及FIB切割和沉積,五軸(X,Y,Z,旋轉(zhuǎn),傾斜)位移記錄器實(shí)現(xiàn)樣品臺(tái)上多樣品的自動(dòng)測(cè)試和掃描,導(dǎo)電的微力傳感探針可有效減少荷電效應(yīng),能夠通過(guò)力和位移兩種控制模式實(shí)現(xiàn)各種力學(xué)測(cè)試,例如拉伸、壓縮、彎曲、剪切、循環(huán)和斷裂測(cè)試等,電性能測(cè)試模塊能夠?qū)崿F(xiàn)力學(xué)和電學(xué)性能同步測(cè)試(樣品座配備6個(gè)電極)導(dǎo)電的微力傳感...

  • 廣州工業(yè)納米力學(xué)測(cè)試
    廣州工業(yè)納米力學(xué)測(cè)試

    德國(guó):T.Gddenhenrich等研制了電容式位移控制微懸臂原子力顯微鏡。在PTB進(jìn)行了一系列稱為1nm級(jí)尺寸精度的計(jì)劃項(xiàng)目,這些研究包括:①.提高直線和角度位移的計(jì)量;②.研究高分辨率檢測(cè)與表面和微結(jié)構(gòu)之間的物理相互作用,從而給出微形貌、形狀和尺寸的測(cè)量。已完成亞納米級(jí)的一維位移和微形貌的測(cè)量。中國(guó)計(jì)量科學(xué)研究院研制了用于研究多種微位移測(cè)量方法標(biāo)準(zhǔn)的高精度微位移差拍激光干涉儀。中國(guó)計(jì)量科學(xué)研究院、清華大學(xué)等研制了用于大范圍納米測(cè)量的差拍法―珀干涉儀,其分辨率為0.3nm,測(cè)量范圍±1.1μm,總不確定度優(yōu)于3.5nm。中國(guó)計(jì)量學(xué)院朱若谷提出了一種能補(bǔ)償環(huán)境影響、插入光纖傳光介質(zhì)的補(bǔ)償式光纖...

  • 四川表面微納米力學(xué)測(cè)試參考價(jià)
    四川表面微納米力學(xué)測(cè)試參考價(jià)

    即使源電阻大幅降低至1MW,對(duì)一個(gè)1mV的信號(hào)的測(cè)量也接近了理論極限,因此要使用一個(gè)普通的數(shù)字多用表(DMM)進(jìn)行測(cè)量將變得十分困難。除了電壓或電流靈敏度不夠高之外,許多DMM在測(cè)量電壓時(shí)的輸入偏移電流很高,而相對(duì)于那些納米技術(shù)[3]常常需要的、靈敏度更高的低電平DC測(cè)量?jī)x器而言,DMM的輸入電阻又過(guò)低。這些特點(diǎn)增加了測(cè)量的噪聲,給電路帶來(lái)不必要的干擾,從而造成測(cè)量的誤差。系統(tǒng)搭建完畢后,必須對(duì)其性能進(jìn)行校驗(yàn),而且消除潛在的誤差源。誤差的來(lái)源可以包括電纜、連接線、探針[5]、沾污和熱量。下面的章節(jié)中將對(duì)降低這些誤差的一些途徑進(jìn)行探討。在納米力學(xué)測(cè)試中,常用的測(cè)試方法包括納米壓痕測(cè)試、納米拉伸測(cè)...

  • 廣西紡織納米力學(xué)測(cè)試實(shí)驗(yàn)室
    廣西紡織納米力學(xué)測(cè)試實(shí)驗(yàn)室

    FT-NMT03納米力學(xué)測(cè)試系統(tǒng)可以配合SEM/FIB原位精確直接地測(cè)量納米纖維的力學(xué)特性。微力傳感器加載微力,納米力學(xué)測(cè)試結(jié)合高分辨位置編碼器可以對(duì)納米纖維進(jìn)行拉伸、循環(huán)、蠕變、斷裂等形變測(cè)試。力-形變(應(yīng)力-應(yīng)變)曲線可以定量的表征納米纖維的材料特性。此外,納米力學(xué)測(cè)試結(jié)合樣品架電連接,可以定量表征電-機(jī)械性質(zhì)。位置穩(wěn)定性,納米力學(xué)測(cè)試對(duì)于納米纖維的精確拉伸測(cè)試,納米力學(xué)測(cè)試系統(tǒng)的位移是測(cè)試不穩(wěn)定性的主要來(lái)源。圖2展示了FT-NMT03納米力學(xué)測(cè)試系統(tǒng)位移的統(tǒng)計(jì)學(xué)評(píng)價(jià),從中可以找到每一個(gè)測(cè)試間隔內(nèi)位移導(dǎo)致的不確定性,例如100s內(nèi)為450pm,意思是65%(或95%)的概率,納米力學(xué)測(cè)試系...

  • 廣西汽車納米力學(xué)測(cè)試廠家供應(yīng)
    廣西汽車納米力學(xué)測(cè)試廠家供應(yīng)

    與傳統(tǒng)硬度計(jì)算不同的是,A 值不是由壓痕照片得到,而是根據(jù) “接觸深度” hc(nm) 計(jì)算得到的。具體關(guān)系式需通過(guò)試驗(yàn)來(lái)確定,根據(jù)壓頭形狀的不同,一般采用多項(xiàng)式擬合的方法,比如針對(duì)三角錐形壓頭,其擬合結(jié)果為:A = 24.5 + 793hc + 4238+ 332+ 0.059+0.069+ 8.68+ 35.4+ 36. 9式中 “接觸深度”hc由下式計(jì)算得出:hc = h - ε P max/S,式中,ε是與壓頭形狀有關(guān)的常數(shù),對(duì)于球形或三角錐形壓頭可以取ε = 0.75。而S的值可以通過(guò)對(duì)載荷-位移曲線的卸載部分進(jìn)行擬合,再對(duì)擬合函數(shù)求導(dǎo)得出,即,式中Q 為擬合函數(shù)。這樣通過(guò)試驗(yàn)得到載...

  • 廣西納米力學(xué)測(cè)試廠商
    廣西納米力學(xué)測(cè)試廠商

    納米壓痕儀簡(jiǎn)介,近年來(lái),國(guó)內(nèi)外研究人員以納米壓痕技術(shù)為基礎(chǔ),開發(fā)出多種納米壓痕儀,并實(shí)現(xiàn)了商品化,為材料的納米力學(xué)性能檢測(cè)提供了高效、便捷的手段。圖片納米壓痕儀主要用于微納米尺度薄膜材料的硬度與楊氏模量測(cè)試,測(cè)試結(jié)果通過(guò)力與壓入深度的曲線計(jì)算得出,無(wú)需通過(guò)顯微鏡觀察壓痕面積。納米壓痕儀的基本組成可以分為控制系統(tǒng)、 移動(dòng)線圈系統(tǒng)、加載系統(tǒng)及壓頭等幾個(gè)部分。壓頭一般使用金剛石壓頭,分為三角錐或四棱錐等類型。試驗(yàn)時(shí),首先輸入初始參數(shù),之后的檢測(cè)過(guò)程則完全由微機(jī)自動(dòng)控制,通過(guò)改變移動(dòng)線圈系統(tǒng)中的電流,可以操縱加載系統(tǒng)和壓頭的動(dòng)作,壓頭壓入載荷的測(cè)量和控制通過(guò)應(yīng)變儀來(lái)完成,同時(shí)應(yīng)變儀還將信號(hào)反饋到移動(dòng)線...

  • 江西化工納米力學(xué)測(cè)試服務(wù)
    江西化工納米力學(xué)測(cè)試服務(wù)

    一般力學(xué)原理包括:。能量和動(dòng)量守恒原理;。哈密頓變分原理;。對(duì)稱原理。由于研究的物體小,納米力學(xué)也要考慮:。當(dāng)物體尺寸和原子距離可比時(shí),物體的離散性;。物體內(nèi)自由度的多樣性和有限性。。熱脹落的重要性;。熵效應(yīng)的重要性;。量子效應(yīng)的重要性。這些原理可提供對(duì)納米物體新異性質(zhì)深入了解。新異性質(zhì)是指這種性質(zhì)在類似的宏觀物體沒有或者很不相同。特別是,當(dāng)物體變小,會(huì)出現(xiàn)各種表面效應(yīng),它由納米結(jié)構(gòu)較高的表面與體積比所決定。這些效應(yīng)影晌納米結(jié)構(gòu)的機(jī)械能和熱學(xué)性質(zhì)(熔點(diǎn),熱容等)例如,由于離散性,固體內(nèi)機(jī)械波要分散,在小區(qū)域內(nèi),彈性力學(xué)的解有特別的行為。自由度大引起熱脹落是納米顆粒通過(guò)潛在勢(shì)壘產(chǎn)生熱隧道及液體和...

  • 海南新能源納米力學(xué)測(cè)試系統(tǒng)
    海南新能源納米力學(xué)測(cè)試系統(tǒng)

    本文中主要對(duì)當(dāng)今幾種主要材料納觀力學(xué)與納米材料力學(xué)特性測(cè)試方法:納米硬度技術(shù)、納米云紋技術(shù)、掃描力顯微鏡技術(shù)等進(jìn)行概述。納米硬度技術(shù)。隨著現(xiàn)代材料表面工程、微電子、集成微光機(jī)電 系統(tǒng)、生物和醫(yī)學(xué)材料的發(fā)展試樣本身或表面改性層厚度越來(lái)越小。傳統(tǒng)的硬度測(cè)量已無(wú)法滿足新材料研究的需要,于是納米硬度技術(shù)應(yīng)運(yùn)而生。納米硬度計(jì)是納米硬度測(cè)量的主要儀器,它是一種檢測(cè)材料微小體積內(nèi)力學(xué)性能的測(cè)試儀器,包括壓痕硬度和劃痕硬度兩種工作模式。由于壓痕或劃痕深度一般控制在微米甚至納米尺度,因此該類儀器已成為電子薄膜、涂層、材料表面及其改性的力學(xué)性能檢測(cè)的理想手段。它不需要將表層從基體上剝離,便可直接給出材料表層力學(xué)性...

  • 深圳高精度納米力學(xué)測(cè)試儀
    深圳高精度納米力學(xué)測(cè)試儀

    原位納米片取樣和力學(xué)測(cè)試技術(shù),原位納米片取樣和力學(xué)測(cè)試技術(shù)是一種新興的納米尺度力學(xué)測(cè)試方法,其基本原理是利用優(yōu)化的離子束打造方法,在含有待測(cè)塑料表面的納米區(qū)域內(nèi)制備出超薄的平面固體材料,再對(duì)其進(jìn)行拉伸、扭曲等力學(xué)測(cè)試。相比于傳統(tǒng)的拉伸試驗(yàn)等方法,原位納米片取樣技術(shù)具有更優(yōu)的尺寸控制和納米量級(jí)精度,可以為納米尺度力學(xué)測(cè)試提供更加準(zhǔn)確的數(shù)據(jù)??傊?,原位納米力學(xué)測(cè)量技術(shù)的研究及應(yīng)用是未來(lái)納米材料科學(xué)發(fā)展的重要方向之一,將為納米材料的設(shè)計(jì)、開發(fā)以及工業(yè)應(yīng)用等領(lǐng)域的發(fā)展做出積極貢獻(xiàn)。在進(jìn)行納米力學(xué)測(cè)試前,需要對(duì)測(cè)試樣品進(jìn)行表面處理和尺寸測(cè)量,以確保測(cè)試結(jié)果的準(zhǔn)確性。深圳高精度納米力學(xué)測(cè)試儀對(duì)納米元器件的...

  • 福建微電子納米力學(xué)測(cè)試儀
    福建微電子納米力學(xué)測(cè)試儀

    納米力學(xué)從研究的手段上可分為納觀計(jì)算力學(xué)和納米實(shí)驗(yàn)力學(xué)。納米計(jì)算力學(xué)包括量子力學(xué)計(jì)算方法、分子動(dòng)力學(xué)計(jì)算和跨層次計(jì)算等不同類型的數(shù)值模擬方法。納米實(shí)驗(yàn)力學(xué)則有兩層含義:一是以納米層次的分辨率來(lái)測(cè)量力學(xué)場(chǎng),即所謂的材料納觀實(shí)驗(yàn)力學(xué);二是對(duì)特征尺度為1-100nm之間的微細(xì)結(jié)構(gòu)進(jìn)行的實(shí)驗(yàn)力學(xué)研究,即所謂的納米材料實(shí)驗(yàn)力學(xué)。納米實(shí)驗(yàn)力學(xué)研究有兩種途徑:一是對(duì)常規(guī)的硬度測(cè)試技術(shù)、云紋法等宏觀力學(xué)測(cè)試技術(shù)進(jìn)行改造,使它們能適應(yīng)納米力學(xué)測(cè)量的需要;另一類是創(chuàng)造如原子力顯微鏡、摩擦力顯微鏡等新的納米力學(xué)測(cè)量技術(shù)建立新原理、新方法。納米力學(xué)測(cè)試技術(shù)的發(fā)展離不開多學(xué)科交叉融合和創(chuàng)新研究團(tuán)隊(duì)的共同努力。福建微電子...

  • 福建原位納米力學(xué)測(cè)試定制
    福建原位納米力學(xué)測(cè)試定制

    用透射電鏡可評(píng)估微納米粒子的平均直徑或粒徑分布。該方法是一種顆粒度觀察測(cè)定的一定方法,因而具有可靠性和直觀性,在微納米材料表征中普遍采用。原子力顯微鏡的英文名為縮寫為AFM。AFM具有著自己獨(dú)特的優(yōu)勢(shì)。AFM對(duì)于樣品的要求較低,AFM的應(yīng)用范圍也較為寬廣。在進(jìn)行納米材料研究中,AFM能夠分析納米材料的表面形貌,AFM 可以同其他設(shè)備如相結(jié)合進(jìn)行微納米粒子的研究。實(shí)驗(yàn)需要進(jìn)行觀察、測(cè)量、記錄、分析等多項(xiàng)步驟,電子顯微技術(shù)的作用可以貫穿整個(gè)實(shí)驗(yàn)過(guò)程,所以電子顯微鏡的重要性不言而喻。納米力學(xué)測(cè)試應(yīng)用于半導(dǎo)體、生物醫(yī)學(xué)、能源等多個(gè)領(lǐng)域,具有普遍前景。福建原位納米力學(xué)測(cè)試定制納米壓痕法:納米壓痕硬度法是...

  • 核工業(yè)納米力學(xué)測(cè)試模塊
    核工業(yè)納米力學(xué)測(cè)試模塊

    AFAM 方法較早是由德國(guó)佛羅恩霍夫無(wú)損檢測(cè)研究所Rabe 等在1994 年提出的。1996 年Rabe 等詳細(xì)分析了探針自由狀態(tài)以及針尖與樣品表面接觸情況下微懸臂的動(dòng)力學(xué)特性,建立了針尖與樣品接觸時(shí)共振頻率與接觸剛度之間的定量化關(guān)系。之后,他們還給出了考慮針尖與樣品側(cè)向接觸、針尖高度及微懸臂傾角影響的微懸臂振動(dòng)特征方程。他們?cè)谶@方面的主要工作奠定了AFAM 定量化測(cè)試的理論基礎(chǔ)。Reinstaedtler 等利用光學(xué)干涉法對(duì)探針懸臂梁的振動(dòng)模態(tài)進(jìn)行了測(cè)量。Turner 等采用解析方法和數(shù)值方法對(duì)比了針尖樣品之間分別存在線性和非線性相互作用時(shí),點(diǎn)質(zhì)量模型和Euler-Bernoulli 梁模型...

  • 甘肅納米力學(xué)測(cè)試廠家供應(yīng)
    甘肅納米力學(xué)測(cè)試廠家供應(yīng)

    經(jīng)過(guò)三十年的發(fā)展,目前科學(xué)家在AFM 基礎(chǔ)上實(shí)現(xiàn)了多種測(cè)量和表征材料不同性能的應(yīng)用模式。利用原子力顯微鏡,人們實(shí)現(xiàn)了對(duì)化學(xué)反應(yīng)前后化學(xué)鍵變化的成像,研究了化學(xué)鍵的角對(duì)稱性質(zhì)以及分子的側(cè)向剛度。Ternes 等測(cè)量了在材料表面移動(dòng)單個(gè)原子所需要施加的作用力。各種不同的應(yīng)用模式可以獲得被測(cè)樣品表面納米尺度力、熱、聲、電、磁等各個(gè)方面的性能?;贏FM 的定量化納米力學(xué)測(cè)試方法主要有力—距離曲線測(cè)試、掃描探針聲學(xué)顯微術(shù)和基于輕敲模式的動(dòng)態(tài)多頻技術(shù)。納米力學(xué)測(cè)試的發(fā)展促進(jìn)了納米材料及其應(yīng)用領(lǐng)域的快速發(fā)展和創(chuàng)新。甘肅納米力學(xué)測(cè)試廠家供應(yīng)將近場(chǎng)聲學(xué)和掃描探針顯微術(shù)相結(jié)合的掃描探針聲學(xué)顯微術(shù)是近些年來(lái)發(fā)展的...

  • 湖北納米力學(xué)性能測(cè)試
    湖北納米力學(xué)性能測(cè)試

    AFAM 方法提出之后,不少研究者對(duì)方法的準(zhǔn)確度和靈敏度方面進(jìn)行了研究。Hurley 等分析了空氣濕度對(duì)AFAM 定量化測(cè)量結(jié)果的影響。Rabe 等分析了探針基片對(duì)AFAM 定量化測(cè)量的影響。Hurley 等詳細(xì)對(duì)比了AFAM 單點(diǎn)測(cè)試與納米壓痕以及聲表面波譜方法的測(cè)試原理、空間分辨率、適用性及測(cè)試優(yōu)缺點(diǎn)等。Stan 等提出一種雙參考材料的方法,此方法不需要了解針尖的力學(xué)性能,可以在一定程度上提高測(cè)試的準(zhǔn)確度。他們還提出了一種基于多峰接觸的接觸力學(xué)模型,在一定程度上可以提高測(cè)試的準(zhǔn)確度。Turner 等通過(guò)嚴(yán)格的理論推導(dǎo)研究了探針不同階彎曲振動(dòng)和扭轉(zhuǎn)振動(dòng)模態(tài)的靈敏度問(wèn)題。Muraoka提出一種...

  • 湖北新能源納米力學(xué)測(cè)試服務(wù)
    湖北新能源納米力學(xué)測(cè)試服務(wù)

    即使源電阻大幅降低至1MW,對(duì)一個(gè)1mV的信號(hào)的測(cè)量也接近了理論極限,因此要使用一個(gè)普通的數(shù)字多用表(DMM)進(jìn)行測(cè)量將變得十分困難。除了電壓或電流靈敏度不夠高之外,許多DMM在測(cè)量電壓時(shí)的輸入偏移電流很高,而相對(duì)于那些納米技術(shù)[3]常常需要的、靈敏度更高的低電平DC測(cè)量?jī)x器而言,DMM的輸入電阻又過(guò)低。這些特點(diǎn)增加了測(cè)量的噪聲,給電路帶來(lái)不必要的干擾,從而造成測(cè)量的誤差。系統(tǒng)搭建完畢后,必須對(duì)其性能進(jìn)行校驗(yàn),而且消除潛在的誤差源。誤差的來(lái)源可以包括電纜、連接線、探針[5]、沾污和熱量。下面的章節(jié)中將對(duì)降低這些誤差的一些途徑進(jìn)行探討。納米力學(xué)測(cè)試可以解決納米材料在制備和應(yīng)用過(guò)程中的力學(xué)問(wèn)題,提...

  • 四川核工業(yè)納米力學(xué)測(cè)試技術(shù)
    四川核工業(yè)納米力學(xué)測(cè)試技術(shù)

    AFAM 利用探針和樣品之間的接觸共振進(jìn)行測(cè)試,基于對(duì)探針的動(dòng)力學(xué)特性以及針尖樣品之間的接觸力學(xué)行為分析,可以通過(guò)對(duì)探針接觸共振頻率、品質(zhì)因子、振幅、相位等響應(yīng)信息的測(cè)量,實(shí)現(xiàn)被測(cè)樣品力學(xué)性能的定量化表征。AFAM 不只可以獲得樣品表面納米尺度的形貌特征,還可以測(cè)量樣品表面或亞表面的納米力學(xué)特性。AFAM 屬于近場(chǎng)聲學(xué)成像技術(shù),它克服了傳統(tǒng)聲學(xué)成像中聲波半波長(zhǎng)對(duì)成像分辨率的限制,其分辨率取決于探針針尖與測(cè)試樣品之間的接觸半徑大小。AFM 探針的針尖半徑很小(5~50 nm),且施加在樣品上的作用力也很小(一般為幾納牛到幾微牛),因此AFAM 的空間分辨率極高,其橫向分辨率與普通AFM 一樣可以...

  • 河南紡織納米力學(xué)測(cè)試
    河南紡織納米力學(xué)測(cè)試

    在黏彈性力學(xué)性能測(cè)試方面,Yuya 等發(fā)展了AFAM 黏彈性力學(xué)性能測(cè)試的理論基礎(chǔ)。隨后,Killgore 等將單點(diǎn)測(cè)試拓展到成像測(cè)試,對(duì)二元聚合物的黏彈性力學(xué)性能進(jìn)行了定量化成像,獲得了存儲(chǔ)模量和損耗模量的分布圖。Hurley 等發(fā)展了一種不需要進(jìn)行中間的校準(zhǔn)測(cè)試過(guò)程而直接測(cè)量損耗因子的方法。Tung 等采用二維流體動(dòng)力學(xué)函數(shù),考慮探針接近樣品表面時(shí)的阻尼和附加質(zhì)量效應(yīng)以及與頻率相關(guān)的流體動(dòng)力載荷,對(duì)黏彈性阻尼損耗測(cè)試進(jìn)行了修正。周錫龍等研究了探針不同階模態(tài)對(duì)黏彈性測(cè)量靈敏度的影響,提出了一種利用軟懸臂梁的高階模態(tài)進(jìn)行黏彈性力學(xué)性能測(cè)試的方法。納米力學(xué)測(cè)試可以幫助研究人員了解納米材料的力學(xué)行...

  • 福建電線電纜納米力學(xué)測(cè)試技術(shù)
    福建電線電纜納米力學(xué)測(cè)試技術(shù)

    采用磁力顯微鏡觀察Sm2Co17基永磁材料表面的波紋磁疇和條狀磁疇結(jié)構(gòu);使用摩擦力顯微鏡對(duì)計(jì)算機(jī)磁盤表面的摩擦特性進(jìn)行試:利用靜電力顯微鏡測(cè)量技術(shù),依靠輕敲模式(Tapping mode)和抬舉模式(Lift mode),用相位成像測(cè)量有機(jī)高分子膜-殼聚糖膜(CHI)的表面電荷密度空間分布等等除此之外,近年來(lái),SPM還用于測(cè)量化學(xué)鍵、納米碳管的強(qiáng)度,以及納米碳管操縱力方面的測(cè)量。利用透射電子顯微鏡和原子力顯微鏡原位加載,觀測(cè)單一納米粒子鏈的力學(xué)屬性和納觀斷裂,采用掃描電鏡、原子力顯微鏡對(duì)納米碳管的拉伸過(guò)程及拉伸強(qiáng)度進(jìn)行測(cè)等:基于原子力顯微鏡提出一種納米級(jí)操縱力的同步測(cè)量方法,進(jìn)而應(yīng)用該方法,成...

  • 貴州納米力學(xué)測(cè)試供應(yīng)
    貴州納米力學(xué)測(cè)試供應(yīng)

    AFAM 方法提出之后,不少研究者對(duì)方法的準(zhǔn)確度和靈敏度方面進(jìn)行了研究。Hurley 等分析了空氣濕度對(duì)AFAM 定量化測(cè)量結(jié)果的影響。Rabe 等分析了探針基片對(duì)AFAM 定量化測(cè)量的影響。Hurley 等詳細(xì)對(duì)比了AFAM 單點(diǎn)測(cè)試與納米壓痕以及聲表面波譜方法的測(cè)試原理、空間分辨率、適用性及測(cè)試優(yōu)缺點(diǎn)等。Stan 等提出一種雙參考材料的方法,此方法不需要了解針尖的力學(xué)性能,可以在一定程度上提高測(cè)試的準(zhǔn)確度。他們還提出了一種基于多峰接觸的接觸力學(xué)模型,在一定程度上可以提高測(cè)試的準(zhǔn)確度。Turner 等通過(guò)嚴(yán)格的理論推導(dǎo)研究了探針不同階彎曲振動(dòng)和扭轉(zhuǎn)振動(dòng)模態(tài)的靈敏度問(wèn)題。Muraoka提出一種...

  • 深圳科研院納米力學(xué)測(cè)試技術(shù)
    深圳科研院納米力學(xué)測(cè)試技術(shù)

    用戶可設(shè)計(jì)自定義的測(cè)試程序和測(cè)試模式:①FT-NTP納米力學(xué)測(cè)試平臺(tái),是一個(gè)5軸納米機(jī)器人系統(tǒng),能夠在絕大部分全尺寸的SEM中對(duì)微納米結(jié)構(gòu)進(jìn)行精確的納米力學(xué)測(cè)試。②FT-nMSC模塊化系統(tǒng)控制器,其連接納米力學(xué)測(cè)試平臺(tái),同步采集力和位移數(shù)據(jù)。其較大特點(diǎn)是該控制器提供硬。件級(jí)別的傳感器保護(hù)模式,防止微力傳感探針和微鑷子的力學(xué)過(guò)載。③FT-nHCM手動(dòng)控制模塊,其配置的兩個(gè)操控桿方便手動(dòng)控制納米力學(xué)測(cè)試平臺(tái)。④帶接線口的SEM法蘭,實(shí)現(xiàn)模塊化系統(tǒng)控制器和納米力學(xué)測(cè)試平臺(tái)的通訊。發(fā)展高精度、高穩(wěn)定性納米力學(xué)測(cè)試設(shè)備,是當(dāng)前科研工作的重要任務(wù)。深圳科研院納米力學(xué)測(cè)試技術(shù)經(jīng)過(guò)三十年的發(fā)展,目前科學(xué)家在A...

  • 湖北材料科學(xué)納米力學(xué)測(cè)試技術(shù)
    湖北材料科學(xué)納米力學(xué)測(cè)試技術(shù)

    納米測(cè)量技術(shù)是利用改制的掃描隧道顯微鏡進(jìn)行微形貌測(cè)量,這個(gè)技術(shù)已成功的應(yīng)用于石墨表面和生物樣本的納米級(jí)測(cè)量。國(guó)外于1982年發(fā)明并使其發(fā)明者Binnig和Rohrer(美國(guó))榮獲1986年物理學(xué)諾貝爾獎(jiǎng)的掃描隧道顯微鏡(STM)。1986年,Binnig等人利用掃描隧道顯微鏡測(cè)量近10-18N的表面力,將掃描隧道顯微鏡與探針式輪廓儀相結(jié)合,發(fā)明了原子力顯微鏡,在空氣中測(cè)量,達(dá)到橫向精度3n m和垂直方向0.1n m的分辨率。California大學(xué)S.Alexander等人利用光杠桿實(shí)現(xiàn)的原子力顯微鏡初次獲得了原子級(jí)分辨率的表面圖像。納米力學(xué)測(cè)試可以用于評(píng)估納米材料的熱力學(xué)性能,為納米材料的應(yīng)...

  • 廣東新能源納米力學(xué)測(cè)試服務(wù)
    廣東新能源納米力學(xué)測(cè)試服務(wù)

    納米壓痕儀的應(yīng)用,納米壓痕儀可適用于有機(jī)或無(wú)機(jī)、軟質(zhì)或硬質(zhì)材料的檢測(cè)分析,包括PVD、CVD、PECVD薄膜,感光薄膜,彩繪釉漆,光學(xué)薄膜,微電子鍍膜,保護(hù)性薄膜,裝飾性薄膜等等?;w可以為軟質(zhì)或硬質(zhì)材料,包括金屬、合金、半導(dǎo)體、玻璃、礦物和有機(jī)材料等。半導(dǎo)體技術(shù)(鈍化層、鍍金屬、Bond Pads);存儲(chǔ)材料(磁盤的保護(hù)層、磁盤基底上的磁性涂層、CD的保護(hù)層);光學(xué)組件(接觸鏡頭、光纖、光學(xué)刮擦保護(hù)層);金屬蒸鍍層;防磨損涂層(TiN, TiC, DLC, 切割工具);藥理學(xué)(藥片、植入材料、生物組織);工程學(xué)(油漆涂料、橡膠、觸摸屏、MEMS)等行業(yè)。在進(jìn)行納米力學(xué)測(cè)試時(shí),需要注意避免外界...

  • 重慶空心納米力學(xué)測(cè)試收費(fèi)標(biāo)準(zhǔn)
    重慶空心納米力學(xué)測(cè)試收費(fèi)標(biāo)準(zhǔn)

    微納米材料研究中用到的一些現(xiàn)代測(cè)試技術(shù):電子顯微法,電子顯微技術(shù)是以電子顯微鏡為研究手段來(lái)分析材料的一種技術(shù)。電子顯微鏡擁有高于光學(xué)顯微鏡的分辨率,可以放大幾十倍到幾十萬(wàn)倍的范圍,在實(shí)驗(yàn)研究中具有不可替代的意義,推動(dòng)了眾多領(lǐng)域研究的進(jìn)程。電子顯微技術(shù)的光源為電子束,通過(guò)磁場(chǎng)聚焦成像或者靜電場(chǎng)的分析技術(shù)才達(dá)成高分辨率的效果、利用電子顯微鏡可以得到聚焦清晰的圖像, 有利于研究人員對(duì)于實(shí)驗(yàn)結(jié)果進(jìn)行觀察分析。利用大數(shù)據(jù)和人工智能技術(shù),優(yōu)化納米力學(xué)測(cè)試結(jié)果分析,提升研究效率。重慶空心納米力學(xué)測(cè)試收費(fèi)標(biāo)準(zhǔn)目前納米壓痕在科研界和工業(yè)界都得到了普遍的應(yīng)用,但是它仍然存在一些難以克服的缺點(diǎn),比如納米壓痕實(shí)際上是...

  • 海南空心納米力學(xué)測(cè)試市場(chǎng)價(jià)格
    海南空心納米力學(xué)測(cè)試市場(chǎng)價(jià)格

    目前微納米力學(xué)性能測(cè)試方法的發(fā)展趨勢(shì)主要向快速定量化以及動(dòng)態(tài)模式發(fā)展,測(cè)試對(duì)象也越來(lái)越多地涉及軟物質(zhì)、生物材料等之前較難測(cè)試的樣品。另外,納米力學(xué)測(cè)試方法的標(biāo)準(zhǔn)化也在逐步推進(jìn)。建立標(biāo)準(zhǔn)化的納米力學(xué)測(cè)試方法標(biāo)志著相關(guān)測(cè)試方法的逐漸成熟,對(duì)納米科學(xué)和技術(shù)的發(fā)展也具有重要的推動(dòng)作用。絕大多數(shù)的納米力學(xué)測(cè)試都需要復(fù)雜的樣品制備過(guò)程。為了使樣品制備簡(jiǎn)單化和人性化,FT-NMT03采用能夠感知力的微鑷子和不同形狀的微力傳感探針針尖來(lái)實(shí)現(xiàn)對(duì)微納結(jié)構(gòu)的精確提取、轉(zhuǎn)移直至將其固定在測(cè)試平臺(tái)上??偠灾?集中納米操作以及力學(xué)-電學(xué)性能同步測(cè)試功能于一體的FT-NMT03能夠滿足幾乎所有的納米力學(xué)測(cè)試需求。納米力學(xué)...

  • 江西表面微納米力學(xué)測(cè)試實(shí)驗(yàn)室
    江西表面微納米力學(xué)測(cè)試實(shí)驗(yàn)室

    本文中主要對(duì)當(dāng)今幾種主要材料納觀力學(xué)與納米材料力學(xué)特性測(cè)試方法:納米硬度技術(shù)、納米云紋技術(shù)、掃描力顯微鏡技術(shù)等進(jìn)行概述。納米硬度技術(shù)。隨著現(xiàn)代材料表面工程、微電子、集成微光機(jī)電 系統(tǒng)、生物和醫(yī)學(xué)材料的發(fā)展試樣本身或表面改性層厚度越來(lái)越小。傳統(tǒng)的硬度測(cè)量已無(wú)法滿足新材料研究的需要,于是納米硬度技術(shù)應(yīng)運(yùn)而生。納米硬度計(jì)是納米硬度測(cè)量的主要儀器,它是一種檢測(cè)材料微小體積內(nèi)力學(xué)性能的測(cè)試儀器,包括壓痕硬度和劃痕硬度兩種工作模式。由于壓痕或劃痕深度一般控制在微米甚至納米尺度,因此該類儀器已成為電子薄膜、涂層、材料表面及其改性的力學(xué)性能檢測(cè)的理想手段。它不需要將表層從基體上剝離,便可直接給出材料表層力學(xué)性...

  • 深圳科研院納米力學(xué)測(cè)試廠家直銷
    深圳科研院納米力學(xué)測(cè)試廠家直銷

    微納米材料研究中用到的一些現(xiàn)代測(cè)試技術(shù):電子顯微法,電子顯微技術(shù)是以電子顯微鏡為研究手段來(lái)分析材料的一種技術(shù)。電子顯微鏡擁有高于光學(xué)顯微鏡的分辨率,可以放大幾十倍到幾十萬(wàn)倍的范圍,在實(shí)驗(yàn)研究中具有不可替代的意義,推動(dòng)了眾多領(lǐng)域研究的進(jìn)程。電子顯微技術(shù)的光源為電子束,通過(guò)磁場(chǎng)聚焦成像或者靜電場(chǎng)的分析技術(shù)才達(dá)成高分辨率的效果、利用電子顯微鏡可以得到聚焦清晰的圖像, 有利于研究人員對(duì)于實(shí)驗(yàn)結(jié)果進(jìn)行觀察分析。通過(guò)納米力學(xué)測(cè)試,可以測(cè)量納米材料的彈性模量、硬度和斷裂韌性等力學(xué)性能。深圳科研院納米力學(xué)測(cè)試廠家直銷借助電子顯微鏡(EM)的原位納米力學(xué)測(cè)試法,利用掃描電子顯微鏡或透射電子顯微鏡(TEM)的高分...

  • 四川納米力學(xué)測(cè)試方法
    四川納米力學(xué)測(cè)試方法

    納米壓痕儀的應(yīng)用,納米壓痕儀可適用于有機(jī)或無(wú)機(jī)、軟質(zhì)或硬質(zhì)材料的檢測(cè)分析,包括PVD、CVD、PECVD薄膜,感光薄膜,彩繪釉漆,光學(xué)薄膜,微電子鍍膜,保護(hù)性薄膜,裝飾性薄膜等等。基體可以為軟質(zhì)或硬質(zhì)材料,包括金屬、合金、半導(dǎo)體、玻璃、礦物和有機(jī)材料等。半導(dǎo)體技術(shù)(鈍化層、鍍金屬、Bond Pads);存儲(chǔ)材料(磁盤的保護(hù)層、磁盤基底上的磁性涂層、CD的保護(hù)層);光學(xué)組件(接觸鏡頭、光纖、光學(xué)刮擦保護(hù)層);金屬蒸鍍層;防磨損涂層(TiN, TiC, DLC, 切割工具);藥理學(xué)(藥片、植入材料、生物組織);工程學(xué)(油漆涂料、橡膠、觸摸屏、MEMS)等行業(yè)。納米力學(xué)測(cè)試可以應(yīng)用于納米材料的研究和...

  • 湖南涂層納米力學(xué)測(cè)試定制
    湖南涂層納米力學(xué)測(cè)試定制

    有限元數(shù)值分析方面,Hurley 等分別基于解析模型和有限元模型兩種數(shù)據(jù)分析方法測(cè)量了鈮薄膜的壓入模量,并進(jìn)行了對(duì)比。Espinoza-Beltran 等考慮探針微懸臂的傾角、針尖高度、梯形橫截面、材料各向異性等的影響,給出了一種將實(shí)驗(yàn)測(cè)試和有限元優(yōu)化分析相結(jié)合,確定針尖樣品面外和面內(nèi)接觸剛度的方法。有限元分析方法綜合考慮了實(shí)際情況中的多種影響因素,精度相對(duì)較高。Kopycinska-Muller 等研究了AFAM 測(cè)試過(guò)程中針尖樣品微納米尺度下的接觸力學(xué)行為。Killgore 等提出了一種通過(guò)檢測(cè)探針接觸共振頻率變化對(duì)針尖磨損進(jìn)行連續(xù)測(cè)量的方法。納米力學(xué)測(cè)試設(shè)備的精度和靈敏度對(duì)于獲得準(zhǔn)確的測(cè)...

1 2 3 4 5 6 7 8 9 10