納米壓痕儀簡介,近年來,國內(nèi)外研究人員以納米壓痕技術(shù)為基礎(chǔ),開發(fā)出多種納米壓痕儀,并實(shí)現(xiàn)了商品化,為材料的納米力學(xué)性能檢測提供了高效、便捷的手段。圖片納米壓痕儀主要用于微納米尺度薄膜材料的硬度與楊氏模量測試,測試結(jié)果通過力與壓入深度的曲線計(jì)算得出,無需通過顯微鏡觀察壓痕面積。納米壓痕儀的基本組成可以分為控制系統(tǒng)、 移動線圈系統(tǒng)、加載系統(tǒng)及壓頭等幾個(gè)部分。壓頭一般使用金剛石壓頭,分為三角錐或四棱錐等類型。試驗(yàn)時(shí),首先輸入初始參數(shù),之后的檢測過程則完全由微機(jī)自動控制,通過改變移動線圈系統(tǒng)中的電流,可以操縱加載系統(tǒng)和壓頭的動作,壓頭壓入載荷的測量和控制通過應(yīng)變儀來完成,同時(shí)應(yīng)變儀還將信號反饋到移動線...
經(jīng)過三十年的發(fā)展,目前科學(xué)家在AFM 基礎(chǔ)上實(shí)現(xiàn)了多種測量和表征材料不同性能的應(yīng)用模式。利用原子力顯微鏡,人們實(shí)現(xiàn)了對化學(xué)反應(yīng)前后化學(xué)鍵變化的成像,研究了化學(xué)鍵的角對稱性質(zhì)以及分子的側(cè)向剛度。Ternes 等測量了在材料表面移動單個(gè)原子所需要施加的作用力。各種不同的應(yīng)用模式可以獲得被測樣品表面納米尺度力、熱、聲、電、磁等各個(gè)方面的性能?;贏FM 的定量化納米力學(xué)測試方法主要有力—距離曲線測試、掃描探針聲學(xué)顯微術(shù)和基于輕敲模式的動態(tài)多頻技術(shù)。納米壓痕技術(shù)作為一種常見測試方法,可實(shí)時(shí)監(jiān)測材料在微觀層面的力學(xué)性能。四川高校納米力學(xué)測試納米壓痕試驗(yàn)舉例,試驗(yàn)材料取單晶鋁,試驗(yàn)在美國 MTS 公司生產(chǎn)...
日本:S.Yoshida主持的Yoshida納米機(jī)械項(xiàng)目主要進(jìn)行以下二個(gè)方面的研究:⑴.利用改制的掃描隧道顯微鏡進(jìn)行微形貌測量,已成功的應(yīng)用于石墨表面和生物樣本的納米級測量;⑵.利用激光干涉儀測距,在激光干涉儀中其開發(fā)的雙波長法限制了空氣湍流造成的誤差影響;其實(shí)驗(yàn)裝置具有1n m的測量控制精度。日本國家計(jì)量研究所(NRLM)研制了一套由穩(wěn)頻塞曼激光光源、四光束偏振邁克爾干涉儀和數(shù)據(jù)分析電子系統(tǒng)組成的新型干涉儀,該所精密測量已涉及一些基本常數(shù)的決定這一類的研究,如硅晶格間距、磁通量等,其掃描微動系統(tǒng)主要采用基于柔性鉸鏈機(jī)構(gòu)的微動工作臺。在醫(yī)學(xué)領(lǐng)域,納米力學(xué)測試可用于研究細(xì)胞和組織的力學(xué)性質(zhì)。半導(dǎo)...
原子力顯微鏡(AFM),原子力顯微鏡(AtomicForce Microscopy,簡稱AFM)是一種常用的納米級力學(xué)性質(zhì)測試方法。它通過在納米尺度下測量材料表面的力與距離之間的關(guān)系,來獲得材料的力學(xué)性質(zhì)信息。AFM的基本工作原理是利用一個(gè)具有納米的探針對樣品表面進(jìn)行掃描,并測量在探針與樣品之間的力的變化。使用AFM可以獲得材料的力學(xué)性質(zhì)參數(shù),如納米硬度、彈性模量和塑性變形等信息。此外,AFM還可以進(jìn)行納米級別的形貌表征,使得研究人員可以直觀地觀察到材料的表面形貌和結(jié)構(gòu)。納米力學(xué)測試在生物醫(yī)學(xué)領(lǐng)域,助力研究細(xì)胞力學(xué)行為,揭示疾病發(fā)生機(jī)制。江西電線電纜納米力學(xué)測試方法納米拉曼光譜法,納米拉曼光譜...
微納米材料研究中用到的一些現(xiàn)代測試技術(shù):電子顯微法,電子顯微技術(shù)是以電子顯微鏡為研究手段來分析材料的一種技術(shù)。電子顯微鏡擁有高于光學(xué)顯微鏡的分辨率,可以放大幾十倍到幾十萬倍的范圍,在實(shí)驗(yàn)研究中具有不可替代的意義,推動了眾多領(lǐng)域研究的進(jìn)程。電子顯微技術(shù)的光源為電子束,通過磁場聚焦成像或者靜電場的分析技術(shù)才達(dá)成高分辨率的效果、利用電子顯微鏡可以得到聚焦清晰的圖像, 有利于研究人員對于實(shí)驗(yàn)結(jié)果進(jìn)行觀察分析。納米力學(xué)測試在生物醫(yī)學(xué)領(lǐng)域,助力研究細(xì)胞力學(xué)行為,揭示疾病發(fā)生機(jī)制。河北化工納米力學(xué)測試隨著精密、 超精密加工技術(shù)的發(fā)展,材料在納米尺度下的力學(xué)特性引起了人們的極大關(guān)注研究。而傳統(tǒng)的硬度測量方法只...
用戶可設(shè)計(jì)自定義的測試程序和測試模式:①FT-NTP納米力學(xué)測試平臺,是一個(gè)5軸納米機(jī)器人系統(tǒng),能夠在絕大部分全尺寸的SEM中對微納米結(jié)構(gòu)進(jìn)行精確的納米力學(xué)測試。②FT-nMSC模塊化系統(tǒng)控制器,其連接納米力學(xué)測試平臺,同步采集力和位移數(shù)據(jù)。其較大特點(diǎn)是該控制器提供硬。件級別的傳感器保護(hù)模式,防止微力傳感探針和微鑷子的力學(xué)過載。③FT-nHCM手動控制模塊,其配置的兩個(gè)操控桿方便手動控制納米力學(xué)測試平臺。④帶接線口的SEM法蘭,實(shí)現(xiàn)模塊化系統(tǒng)控制器和納米力學(xué)測試平臺的通訊。納米力學(xué)測試旨在探究微觀尺度下材料的力學(xué)性能,為科研和工業(yè)領(lǐng)域提供有力支持。四川汽車納米力學(xué)測試服務(wù)原位納米機(jī)械性能試驗(yàn)技...
對納米元器件的電測量——電壓、電阻和電流——都帶來了一些特有的困難,而且本身容易產(chǎn)生誤差。研發(fā)涉及量子水平上的材料與元器件,這也給人們的電學(xué)測量工作帶來了種種限制。在任何測量中,靈敏度的理論極限是由電路中的電阻所產(chǎn)生的噪聲來決定的。電壓噪聲[1]與電阻的方根、帶寬和一定溫度成正比。高的源電阻限制了電壓測量的理論靈敏度[2]。雖然完全可能在源電阻抗為1W的情況下對1mV的信號進(jìn)行測量,但在一個(gè)太歐姆的信號源上測量同樣的1mV的信號是現(xiàn)實(shí)的。納米力學(xué)測試的發(fā)展促進(jìn)了納米材料及其應(yīng)用領(lǐng)域的快速發(fā)展和創(chuàng)新。遼寧微電子納米力學(xué)測試納米拉曼光譜法,納米拉曼光譜法是一種非常有用的測試方法,可以用來研究材料的...
將近場聲學(xué)和掃描探針顯微術(shù)相結(jié)合的掃描探針聲學(xué)顯微術(shù)是近些年來發(fā)展的納米力學(xué)測試方法。掃描探針聲學(xué)顯微術(shù)有多種應(yīng)用模式,如超聲力顯微術(shù)(ultrasonic force microscopy,UFM)、原子力聲學(xué)顯微術(shù)(atomic force acoustic microscopy,AFAM)、超聲原子力顯微術(shù)(ultrasonic atomic force microscopy,UAFM),掃描聲學(xué)力顯微術(shù)(scanning acoustic force microscopy,SAFM)等。在以上幾種應(yīng)用模式中,以基于接觸共振檢測的AFAM 和UAFM 這兩種方法應(yīng)用較為普遍,有時(shí)也將它們...
隨著精密、 超精密加工技術(shù)的發(fā)展,材料在納米尺度下的力學(xué)特性引起了人們的極大關(guān)注研究。而傳統(tǒng)的硬度測量方法只適于宏觀條件下的研究和應(yīng)用,無法用于測量壓痕深度為納米級或亞微米級的硬度( 即所謂納米硬度,nano- hardness) 。近年來,測量納米硬度一般采用新興的納米壓痕技術(shù) (nano-indentation),由于采用納米壓痕技術(shù)可以在極小的尺寸范圍內(nèi)測試材料的力學(xué)性能,除了塑性性質(zhì)外,還可反映材料的彈性性質(zhì),因此得到了越來越普遍的應(yīng)用。納米力學(xué)測試還可以揭示納米材料的表面特性和表面反應(yīng)動力學(xué)。河南納米力學(xué)測試供應(yīng)商有限元數(shù)值分析方面,Hurley 等分別基于解析模型和有限元模型兩種數(shù)...
納米纖維已經(jīng)展現(xiàn)出各種有趣的特性,除了高比表面積-體積比,納米纖維相比于塊狀材料,沿主軸方向有更突出的力學(xué)特性。因此納米纖維在復(fù)合材料、纖維、支架(組織工程學(xué))、藥物輸送、創(chuàng)傷敷料或紡織業(yè)等領(lǐng)域是一種非常有應(yīng)用前景的材料。納米纖維機(jī)械性能(剛度、彈性變形范圍、極限強(qiáng)度、韌性)的定量表征對理解其在目標(biāo)應(yīng)用中的性能非常重要,而測量這些參數(shù)需要高度專業(yè)畫的儀器,必須具備以下功能:以亞納米的分辨率測量非常小的變形;在測量的時(shí)間量程(例如100 s)內(nèi)在納米級的位移下保持高度穩(wěn)定的測量系統(tǒng);以亞納米分辨率測量微小力;處理(撿取-放置)納米纖維并將其放置在機(jī)械測試儀器上。在醫(yī)學(xué)領(lǐng)域,納米力學(xué)測試可用于研究...
納米力學(xué)測試儀,納米力學(xué)測試儀是用于測量納米尺度下材料力學(xué)性質(zhì)的專屬設(shè)備。納米力學(xué)測試儀可以進(jìn)行納米級別的壓痕測試、拉伸測試和扭曲測試等。它通常配備有納米壓痕儀、納米拉曼光譜儀等附件,可以實(shí)現(xiàn)多種力學(xué)性質(zhì)的測試。納米力學(xué)測試儀的使用需要在納米級別下進(jìn)行精細(xì)調(diào)節(jié),并確保測試精度和重復(fù)性。它普遍應(yīng)用于納米材料的強(qiáng)度研究、納米薄膜的力學(xué)性質(zhì)測試及納米器件的力學(xué)性能等方面。綜上所述,納米尺度下材料力學(xué)性質(zhì)的測試方法多種多樣,每種方法都有其獨(dú)特的優(yōu)勢和適用范圍。納米力學(xué)測試可以幫助研究人員了解納米材料的力學(xué)行為,從而指導(dǎo)納米材料的設(shè)計(jì)和應(yīng)用。福建納米力學(xué)測試實(shí)驗(yàn)室樣品制備,納米力學(xué)測試納米纖維的拉伸測試...
光催化納米材料在水處理中的應(yīng)用,光催化微納米材料以將廢水中的有機(jī)污染物迅速轉(zhuǎn)化、分解為水和二氧化碳等無害物質(zhì),有效地提高了處理效率與處理質(zhì)量。人們常用的處理廢水中有機(jī)物的光催化微納米材料是N型半導(dǎo)體材料,較具表示性的是納米Ti02,Ti02的發(fā)現(xiàn)與應(yīng)用為污水中有害物質(zhì)與水的完全催化分解開辟了新的道路,且不會產(chǎn)生二次污染,具有很高的化學(xué)穩(wěn)定性與較廣的作用范圍。此外,在無機(jī)廢水的處理中,由于納米顆粒表面的無機(jī)物具有光化學(xué)活性,可以通過高氧化態(tài)吸附汞、銀等貴微納米材料在水處理中的應(yīng)用研究,不只消除了工業(yè)廢水的毒性,還可以從污水廢水中回收貴金屬。納米力學(xué)測試的前沿研究方向包括多功能材料力學(xué)、納米結(jié)構(gòu)動...
銀微納米材料,微納米材料的性能受到其形貌的影響,不同維度類型的銀微納米材料有著不同的應(yīng)用范圍。零維的銀納米材料包括銀原子和粒徑小于15nm 的銀納米粉,主要提高催化性能、 抗細(xì)菌及光性能:一維的銀納米線由化學(xué)還原法制備,主要用于透明納米銀線薄膜制備的柔性電子器件;二維的銀微納米片可用球磨法、光誘導(dǎo)法、模板法等方法制備,其在導(dǎo)電漿料及電子元器件等方面有普遍的應(yīng)用:三維的銀微納米材料包括球形和異形銀粉,球形銀粉主要用于導(dǎo)電漿料填充物,異形銀粉主要應(yīng)用催化、光學(xué)等方面。改善制備方法,實(shí)現(xiàn)微納米材雨的形貌授制,提升產(chǎn)物穩(wěn)定性,是銀納米材料研究的發(fā)展方向。預(yù)覽與源文檔一致,下載高清無水印微納米技術(shù)是一門...
除了采用彎曲振動模式進(jìn)行測量外,Reinstadtler 等給出了探針扭轉(zhuǎn)振動模式測量側(cè)向接觸剛度的理論基礎(chǔ)。通過同時(shí)測量探針微懸臂的彎曲振動和扭轉(zhuǎn)振動,Hurley 和Turner提出了一種同時(shí)測量各向同性材料楊氏模量、剪切模量和泊松比的方法。Killgore 等提出了利用軟探針的高階模態(tài)進(jìn)行AFAM 定量化測試的方法,可以使探針施加在樣品上的力減小到10 nN,極大地?cái)U(kuò)展了這一方法的應(yīng)用范圍。Killgore 和Hurley提出了一種新的脈沖接觸共振的方法,將接觸共振與脈沖力模式相結(jié)合,不只能測量探針的接觸共振頻率和品質(zhì)因子,還可以測量針尖樣品之間黏附力的大小。納米力學(xué)測試還可以評估材料在...
隨著科學(xué)技術(shù)的發(fā)展,納米尺度材料的研究變得越來越重要。納米尺度材料具有獨(dú)特的力學(xué)性質(zhì),與傳統(tǒng)材料相比有著許多不同之處。為了深入了解和研究納米尺度材料的力學(xué)性質(zhì),科學(xué)家們不斷開發(fā)出各種先進(jìn)的測試方法。在本文中,我將分享一些納米尺度下常用的材料力學(xué)性質(zhì)測試方法,研究人員可以根據(jù)具體需求選擇適合的方法來進(jìn)行材料力學(xué)性質(zhì)的測試與研究。納米尺度下力學(xué)性質(zhì)的研究對于深入了解材料的力學(xué)行為、提高材料性能以及開發(fā)新材料具有重要意義。希望本文所分享的方法能夠?qū)ο嚓P(guān)研究和應(yīng)用提供一定的指導(dǎo)和幫助。納米力學(xué)測試可以解決納米材料在制備和應(yīng)用過程中的力學(xué)問題,提高納米材料的性能和穩(wěn)定性。廣東國產(chǎn)納米力學(xué)測試廠商經(jīng)過三十...
納米硬度計(jì)主要由移動線圈、加載單元、金剛石壓頭和控制單元4部分組成。壓頭及其所在軸的運(yùn)動由移動線圈控制,改變線圈電流的大小即可實(shí)現(xiàn)壓頭的軸向位移,帶動壓頭垂直壓向試件表面,在試件表面產(chǎn)生壓力。移動線圈設(shè)計(jì)的關(guān)鍵在于既要滿足較大量程的需要,還必須有很高的分辨率,以實(shí)現(xiàn)納米級的位移和精確測量。壓頭載荷的測量和控制是通過應(yīng)變儀來實(shí)現(xiàn)的。應(yīng)變儀發(fā)出的信號再反饋到移動線圈上.如此可進(jìn)行閉環(huán)控制,以實(shí)現(xiàn)限定載荷和壓深痕實(shí)驗(yàn)。整個(gè)壓入過程完全由微機(jī)自動控制進(jìn)行。可在線測量位移與相應(yīng)的載荷,并建立兩者之間的關(guān)系壓頭大多為金剛石壓頭,常用的壓頭有Berkovich壓頭、Cube Corner壓頭和Conical...
即使源電阻大幅降低至1MW,對一個(gè)1mV的信號的測量也接近了理論極限,因此要使用一個(gè)普通的數(shù)字多用表(DMM)進(jìn)行測量將變得十分困難。除了電壓或電流靈敏度不夠高之外,許多DMM在測量電壓時(shí)的輸入偏移電流很高,而相對于那些納米技術(shù)[3]常常需要的、靈敏度更高的低電平DC測量儀器而言,DMM的輸入電阻又過低。這些特點(diǎn)增加了測量的噪聲,給電路帶來不必要的干擾,從而造成測量的誤差。系統(tǒng)搭建完畢后,必須對其性能進(jìn)行校驗(yàn),而且消除潛在的誤差源。誤差的來源可以包括電纜、連接線、探針[5]、沾污和熱量。下面的章節(jié)中將對降低這些誤差的一些途徑進(jìn)行探討。納米力學(xué)測試可用于研究納米顆粒在膠體、液態(tài)等介質(zhì)中的相互作用...
研究液相環(huán)境下的流體載荷對探針振動產(chǎn)生的影響可以將AFAM 定量化測試應(yīng)用范圍擴(kuò)展至液相環(huán)境。液相環(huán)境下增加的流體質(zhì)量載荷和流體阻尼使探針振動的共振頻率和品質(zhì)因子都較大程度上減小。Parlak 等采用簡單的解析模型考慮流體質(zhì)量載荷和流體阻尼效應(yīng),可以在液相環(huán)境下從探針的接觸共振頻率導(dǎo)出針尖樣品的接觸剛度值。Tung 等通過嚴(yán)格的理論推導(dǎo),提出通過重構(gòu)流體動力學(xué)函數(shù)的方法,將流體慣性載荷效應(yīng)進(jìn)行分離。此方法不需要預(yù)先知道探針的幾何尺寸及材料特性,也不需要了解周圍流體的力學(xué)性能。納米力學(xué)測試還可以評估材料在高溫、低溫等極端環(huán)境下的性能表現(xiàn)。重慶國產(chǎn)納米力學(xué)測試納米壓痕試驗(yàn)舉例,試驗(yàn)材料取單晶鋁,試...
微納米材料研究中用到的一些現(xiàn)代測試技術(shù):電子顯微法,電子顯微技術(shù)是以電子顯微鏡為研究手段來分析材料的一種技術(shù)。電子顯微鏡擁有高于光學(xué)顯微鏡的分辨率,可以放大幾十倍到幾十萬倍的范圍,在實(shí)驗(yàn)研究中具有不可替代的意義,推動了眾多領(lǐng)域研究的進(jìn)程。電子顯微技術(shù)的光源為電子束,通過磁場聚焦成像或者靜電場的分析技術(shù)才達(dá)成高分辨率的效果、利用電子顯微鏡可以得到聚焦清晰的圖像, 有利于研究人員對于實(shí)驗(yàn)結(jié)果進(jìn)行觀察分析。在納米尺度上,材料的力學(xué)性質(zhì)往往與其宏觀尺度下的性質(zhì)有明顯不同,因此納米力學(xué)測試具有重要意義。四川材料科學(xué)納米力學(xué)測試哪家好原位納米壓痕儀的主要功能為:安裝于SEM或者FIB中,可以對金屬材料、陶...
用透射電鏡可評估微納米粒子的平均直徑或粒徑分布。該方法是一種顆粒度觀察測定的一定方法,因而具有可靠性和直觀性,在微納米材料表征中普遍采用。原子力顯微鏡的英文名為縮寫為AFM。AFM具有著自己獨(dú)特的優(yōu)勢。AFM對于樣品的要求較低,AFM的應(yīng)用范圍也較為寬廣。在進(jìn)行納米材料研究中,AFM能夠分析納米材料的表面形貌,AFM 可以同其他設(shè)備如相結(jié)合進(jìn)行微納米粒子的研究。實(shí)驗(yàn)需要進(jìn)行觀察、測量、記錄、分析等多項(xiàng)步驟,電子顯微技術(shù)的作用可以貫穿整個(gè)實(shí)驗(yàn)過程,所以電子顯微鏡的重要性不言而喻。納米力學(xué)測試對于理解納米材料在極端條件下的力學(xué)行為具有重要意義,如高溫、高壓等。海南汽車納米力學(xué)測試參考價(jià)AFAM 方...
微納米纖維素,微納米纖維素材料在農(nóng)業(yè)、生物醫(yī)用材料等領(lǐng)域的普遍應(yīng)用。微納米纖維素水凝膠表現(xiàn)出各向異性的力學(xué)性能和優(yōu)良溶脹性能,可應(yīng)用于生物醫(yī)學(xué)和機(jī)器人等領(lǐng)域。其在納米尺度上表現(xiàn)出良好的形貌特征和優(yōu)異的力學(xué)性能??辜?xì)菌實(shí)驗(yàn)表明,該復(fù)合超細(xì)水凝膠纖維可有效殺滅陽性和陰性細(xì)菌菌株,同時(shí)對正常哺乳動物細(xì) 胞保持友好性。這種超細(xì)水凝膠微纖維可有效解決微生物威脅人類健康的問題。這種靈活的合成核殼復(fù)合超細(xì)水凝膠微纖維方法,具有重要的生物醫(yī)學(xué)應(yīng)用前景,同時(shí)該方法也可應(yīng)用于材料科學(xué)、組織工程和再生醫(yī)學(xué)等領(lǐng)域。納米力學(xué)測試可用于研究納米顆粒在膠體、液態(tài)等介質(zhì)中的相互作用行為。四川微納米力學(xué)測試設(shè)備在黏彈性力學(xué)性能...
主要的微納米力學(xué)測量技術(shù):1、微納米壓痕測試技術(shù),1.1壓入測試技術(shù),壓人測試技術(shù)是較初的是表征各種材料力學(xué)性能較常用的方法之一,可以追溯到 20 世紀(jì)初的定量硬度測試方法。傳統(tǒng)的壓人測試技術(shù)是利用已知幾何形狀的硬壓頭以預(yù)設(shè)的壓人深度或者載荷作用到較軟的樣品表面,通過測量殘余壓痕的尺寸計(jì)算相關(guān)的硬度指數(shù)。但壓入測試技術(shù)的缺陷在所能夠表征的材料力學(xué)參量局限于硬度和彈性模量這2個(gè)基本的參量。1.2 微納米壓痕測試,近年來新型材料正在向低維化、功能化與復(fù)合化方向飛速發(fā)展,在微納米尺度作用區(qū)域上開展微納米壓痕測試已被普遍用作評價(jià)材料因微觀結(jié)構(gòu)變化面誘發(fā)力學(xué)性能變化以及獲得材料物性轉(zhuǎn)變等新現(xiàn)象、新規(guī)律的...
納米壓痕法:納米壓痕硬度法是一類測量材料表面力學(xué)性能 的先進(jìn)技術(shù)。其原理是在加載過程中 試樣表面在壓頭作用下首先發(fā)生彈性變形,隨著載荷的增加試樣開始發(fā)生塑性變形,加載曲線呈非線性,卸載曲線反映被測物體的彈性恢復(fù)過程。通過分析加卸載曲線可以得到材料的硬度和彈性模量等參量。納米壓痕法不只可以測量材料的硬度和彈性模量,還可以根據(jù)壓頭壓縮過程中脆性材料產(chǎn)生的裂紋估算材料的斷裂韌性,根據(jù)材料的位移壓力曲線與時(shí)間的相關(guān)性獲悉材料的蠕變特性。除此之外,納米壓痕法還用于納米膜厚度、微結(jié)構(gòu),如微梁的剛度與撓度等的測量。納米力學(xué)測試可以應(yīng)用于納米材料的研究和開發(fā),以及納米器件的設(shè)計(jì)和制造。廣州新能源納米力學(xué)測試原...
納米壓痕試驗(yàn)舉例,試驗(yàn)材料取單晶鋁,試驗(yàn)在美國 MTS 公司生產(chǎn)的 Nano Indenter XP 型納米硬度儀以及美國 Digital Instruments 公司生產(chǎn)的原子力顯微鏡 (AFM) 上進(jìn)行。首先將試樣放到納米硬度儀上進(jìn)行壓痕試驗(yàn),根據(jù)設(shè)置的較大載荷或者壓痕深度的不同,試驗(yàn)時(shí)間從數(shù)十分鐘到若干小時(shí)不等,中間過程不需人工干預(yù)。試驗(yàn)結(jié)束后,納米壓痕儀自動計(jì)算出試樣的納米硬度值和相關(guān)重要性能指標(biāo)。本試驗(yàn)中對單晶鋁(110) 面進(jìn)行檢測,設(shè)置壓痕深度為1.5 μ m,共測量三點(diǎn),較終結(jié)果取三點(diǎn)的平均值。納米力學(xué)測試可以用于評估納米材料的性能和質(zhì)量,以確保其在實(shí)際應(yīng)用中的可靠性。廣東原位...
當(dāng)前納米力學(xué)主要應(yīng)用的測試手段是納米壓痕和基于原子力顯微鏡(AFM) 的力—距離曲線方法,實(shí)際上還有另外一種基于AFM 的納米力學(xué)測試方法——掃描探針聲學(xué)顯微術(shù)(atomic force acoustic microscopy,AFAM)。AFAM具有分辨率高、成像速度快、相對誤差低、力學(xué)性能敏感度高等優(yōu)點(diǎn)。然而,目前AFAM 的應(yīng)用還不夠普遍,相關(guān)領(lǐng)域的學(xué)者對AFAM 了解和使用的還不多。為此,我們在前期研究的基礎(chǔ)上,經(jīng)過整理和凝練,形成了這部專著,目的是推動AFAM這種新型納米力學(xué)測量方法在國內(nèi)的普遍應(yīng)用。在生物醫(yī)學(xué)領(lǐng)域,納米力學(xué)測試有助于了解細(xì)胞與納米材料的相互作用機(jī)制。廣東半導(dǎo)體納米力...
納米壓痕試驗(yàn)舉例,試驗(yàn)材料取單晶鋁,試驗(yàn)在美國 MTS 公司生產(chǎn)的 Nano Indenter XP 型納米硬度儀以及美國 Digital Instruments 公司生產(chǎn)的原子力顯微鏡 (AFM) 上進(jìn)行。首先將試樣放到納米硬度儀上進(jìn)行壓痕試驗(yàn),根據(jù)設(shè)置的較大載荷或者壓痕深度的不同,試驗(yàn)時(shí)間從數(shù)十分鐘到若干小時(shí)不等,中間過程不需人工干預(yù)。試驗(yàn)結(jié)束后,納米壓痕儀自動計(jì)算出試樣的納米硬度值和相關(guān)重要性能指標(biāo)。本試驗(yàn)中對單晶鋁(110) 面進(jìn)行檢測,設(shè)置壓痕深度為1.5 μ m,共測量三點(diǎn),較終結(jié)果取三點(diǎn)的平均值。納米力學(xué)測試通常在真空或者液體環(huán)境下進(jìn)行,以保證測試的準(zhǔn)確性。湖南汽車納米力學(xué)測試哪...
納米力學(xué)從研究的手段上可分為納觀計(jì)算力學(xué)和納米實(shí)驗(yàn)力學(xué)。納米計(jì)算力學(xué)包括量子力學(xué)計(jì)算方法、分子動力學(xué)計(jì)算和跨層次計(jì)算等不同類型的數(shù)值模擬方法。納米實(shí)驗(yàn)力學(xué)則有兩層含義:一是以納米層次的分辨率來測量力學(xué)場,即所謂的材料納觀實(shí)驗(yàn)力學(xué);二是對特征尺度為1-100nm之間的微細(xì)結(jié)構(gòu)進(jìn)行的實(shí)驗(yàn)力學(xué)研究,即所謂的納米材料實(shí)驗(yàn)力學(xué)。納米實(shí)驗(yàn)力學(xué)研究有兩種途徑:一是對常規(guī)的硬度測試技術(shù)、云紋法等宏觀力學(xué)測試技術(shù)進(jìn)行改造,使它們能適應(yīng)納米力學(xué)測量的需要;另一類是創(chuàng)造如原子力顯微鏡、摩擦力顯微鏡等新的納米力學(xué)測量技術(shù)建立新原理、新方法。納米力學(xué)測試的結(jié)果可以為納米材料的安全性和可靠性評估提供重要依據(jù)。重慶微納米力...
掃描探針聲學(xué)顯微術(shù)一般適用于模量范圍在1~300 GPa 的材料。對于更軟的材料,在測試過程中接觸力有可能會對樣品造成損害?;谳p敲模式的原子力顯微鏡多頻成像技術(shù)是近年來發(fā)展的一項(xiàng)納米力學(xué)測試方法。通過同時(shí)激勵和檢測探針多個(gè)頻率的響應(yīng)或探針振動的兩階(或多階) 模態(tài)或探針振動的基頻和高次諧波成分等,可以實(shí)現(xiàn)對被測樣品形貌、彈性等性質(zhì)的快速測量。只要是涉及探針兩個(gè)及兩個(gè)以上頻率成分的激勵和檢測,均可以歸為多頻成像技術(shù)。由于輕敲模式下針尖施加的作用力遠(yuǎn)小于接觸狀態(tài)下的作用力,因此基于輕敲模式的多頻成像技術(shù)適合于軟物質(zhì)力學(xué)性能的測量。通過納米力學(xué)測試,可評估納米材料在極端環(huán)境下的可靠性。重慶納米力學(xué)...
隨著精密、 超精密加工技術(shù)的發(fā)展,材料在納米尺度下的力學(xué)特性引起了人們的極大關(guān)注研究。而傳統(tǒng)的硬度測量方法只適于宏觀條件下的研究和應(yīng)用,無法用于測量壓痕深度為納米級或亞微米級的硬度( 即所謂納米硬度,nano- hardness) 。近年來,測量納米硬度一般采用新興的納米壓痕技術(shù) (nano-indentation),由于采用納米壓痕技術(shù)可以在極小的尺寸范圍內(nèi)測試材料的力學(xué)性能,除了塑性性質(zhì)外,還可反映材料的彈性性質(zhì),因此得到了越來越普遍的應(yīng)用。納米力學(xué)測試助力新能源材料研發(fā),提高能量轉(zhuǎn)換效率。深圳納米力學(xué)測試廠商納米力學(xué)測試儀,納米力學(xué)測試儀是用于測量納米尺度下材料力學(xué)性質(zhì)的專屬設(shè)備。納米力...
量子效應(yīng)也決定納米結(jié)構(gòu)新的電,光和化學(xué)性質(zhì)。因此量子效應(yīng)在鄰近的納米科學(xué),納米技術(shù),如納米電子學(xué),先進(jìn)能源系統(tǒng)和納米生物技術(shù)學(xué)科范圍得到更多注意。納米測量技術(shù)是利用改制的掃描隧道顯微鏡進(jìn)行微形貌測量,這個(gè)技術(shù)已成功的應(yīng)用于石墨表面和生物樣本的納米級測量。安全一直是必須認(rèn)真考慮的問題。電測量工具會輸出有危險(xiǎn)的、甚至是致命的電壓和電流。清楚儀器使用中何時(shí)會發(fā)生這些情形顯得極為重要,只有這樣人們才能采取恰當(dāng)?shù)陌踩婪妒侄?。請認(rèn)真閱讀并遵從各種工具附帶的安全指示。納米壓痕技術(shù)作為一種常見測試方法,可實(shí)時(shí)監(jiān)測材料在微觀層面的力學(xué)性能。廣州汽車納米力學(xué)測試實(shí)驗(yàn)室模塊化設(shè)計(jì)使系統(tǒng)適用于各種形貌樣品的測試需求...