圖2是后端融合方法的流程圖。圖3是中間融合方法的流程圖。圖4是前端融合模型的架構(gòu)圖。圖5是前端融合模型的準(zhǔn)確率變化曲線圖。圖6是前端融合模型的對數(shù)損失變化曲線圖。圖7是前端融合模型的檢測混淆矩陣示意圖。圖8是規(guī)范化前端融合模型的檢測混淆矩陣示意圖。圖9是前端融合模型的roc曲線圖。圖10是后端融合模型的架構(gòu)圖。圖11是后端融合模型的準(zhǔn)確率變化曲線圖。圖12是后端融合模型的對數(shù)損失變化曲線圖。圖13是后端融合模型的檢測混淆矩陣示意圖。圖14是規(guī)范化后端融合模型的檢測混淆矩陣示意圖。圖15是后端融合模型的roc曲線圖。圖16是中間融合模型的架構(gòu)圖。圖17是中間融合模型的準(zhǔn)確率變化曲線圖。圖18是中間融合模型的對數(shù)損失變化曲線圖。圖19是中間融合模型的檢測混淆矩陣示意圖。圖20是規(guī)范化中間融合模型的檢測混淆矩陣示意圖。圖21是中間融合模型的roc曲線圖。具體實(shí)施方式下面將結(jié)合本發(fā)明實(shí)施例中的附圖,對本發(fā)明實(shí)施例中的技術(shù)方案進(jìn)行清楚、完整地描述,顯然,所描述的實(shí)施例**是本發(fā)明一部分實(shí)施例,而不是全部的實(shí)施例。基于本發(fā)明中的實(shí)施例,本領(lǐng)域普通技術(shù)人員在沒有做出創(chuàng)造性勞動前提下所獲得的所有其他實(shí)施例,都屬于本發(fā)明保護(hù)的范圍。代碼質(zhì)量評估顯示注釋覆蓋率不足30%需加強(qiáng)。電力軟件系統(tǒng)評測價格
特征之間存在部分重疊,但特征類型間存在著互補(bǔ),融合這些不同抽象層次的特征可更好的識別軟件的真正性質(zhì)。且惡意軟件通常偽造出和良性軟件相似的特征,逃避反**軟件的檢測,但惡意軟件很難同時偽造多個抽象層次的特征逃避檢測?;谠撚^點(diǎn),本發(fā)明實(shí)施例提出一種基于多模態(tài)深度學(xué)習(xí)的惡意軟件檢測方法,以實(shí)現(xiàn)對惡意軟件的有效檢測,提取了三種模態(tài)的特征(dll和api信息、pe格式結(jié)構(gòu)信息和字節(jié)碼3-grams),提出了通過前端融合、后端融合和中間融合這三種融合方式集成三種模態(tài)的特征,有效提高惡意軟件檢測的準(zhǔn)確率和魯棒性,具體步驟如下:步驟s1、提取軟件樣本的二進(jìn)制可執(zhí)行文件的dll和api信息、pe格式結(jié)構(gòu)信息以及字節(jié)碼n-grams的特征表示,生成軟件樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖;統(tǒng)計當(dāng)前軟件樣本的導(dǎo)入節(jié)中引用的dll和api,提取得到當(dāng)前軟件樣本的二進(jìn)制可執(zhí)行文件的dll和api信息的特征表示。對當(dāng)前軟件樣本的二進(jìn)制可執(zhí)行文件進(jìn)行格式結(jié)構(gòu)解析,并按照格式規(guī)范提取**該軟件樣本的格式結(jié)構(gòu)信息,得到該軟件樣本的二進(jìn)制可執(zhí)行文件的pe格式結(jié)構(gòu)信息的特征表示。第三方軟件檢測收費(fèi)深圳艾策信息科技:賦能中小企業(yè)的數(shù)字化未來。
k為短序列特征總數(shù),1≤i≤k??蓤?zhí)行文件長短大小不一,為了防止該特征統(tǒng)計有偏,使用∑knk,j進(jìn)行歸一化處理。逆向文件頻率(inversedocumentfrequency,idf)是一個短序列特征普遍重要性的度量。某一短序列特征的idf,可以由總樣本實(shí)施例件數(shù)目除以包含該短序列特征之樣本實(shí)施例件的數(shù)目,再將得到的商取對數(shù)得到:其中,|d|指軟件樣本j的總數(shù),|{j:i∈j}|指包含短序列特征i的軟件樣本j的數(shù)目。idf的主要思想是:如果包含短序列特征i的軟件練樣本越少,也就是|{j:i∈j}|越小,idf越大,則說明短序列特征i具有很好的類別區(qū)分能力。:如果某一特征在某樣本中以較高的頻率出現(xiàn),而包含該特征的樣本數(shù)目較小,可以產(chǎn)生出高權(quán)重的,該特征的。因此,,保留重要的特征。此處選取可能區(qū)分惡意軟件和良性軟件的短序列特征,是因?yàn)樽止?jié)碼n-grams提取的特征很多,很多都是無效特征,或者效果非常一般的特征,保持這些特征會影響檢測方法的性能和效率,所以要選出有效的特征即可能區(qū)分惡意軟件和良性軟件的短序列特征。步驟s2、將軟件樣本中的類別已知的軟件樣本作為訓(xùn)練樣本,然后分別采用前端融合方法、后端融合方法和中間融合方法設(shè)計三種不同方案的多模態(tài)數(shù)據(jù)融合方法。
對一些質(zhì)量要求和可靠性要求較高的模塊,一般要滿足所需條件的組合覆蓋或者路徑覆蓋標(biāo)準(zhǔn)。[2]軟件測試方法集成測試集成測試是軟件測試的第二階段,在這個階段,通常要對已經(jīng)嚴(yán)格按照程序設(shè)計要求和標(biāo)準(zhǔn)組裝起來的模塊同時進(jìn)行測試,明確該程序結(jié)構(gòu)組裝的正確性,發(fā)現(xiàn)和接口有關(guān)的問題,比如模塊接口的數(shù)據(jù)是否會在穿越接口時發(fā)生丟失;各個模塊之間因某種疏忽而產(chǎn)生不利的影響;將模塊各個子功能組合起來后產(chǎn)生的功能要求達(dá)不到預(yù)期的功能要求;一些在誤差范圍內(nèi)且可接受的誤差由于長時間的積累進(jìn)而到達(dá)了不能接受的程度;數(shù)據(jù)庫因單個模塊發(fā)生錯誤造成自身出現(xiàn)錯誤等等。同時因集成測試是界于單元測試和系統(tǒng)測試之間的,所以,集成測試具有承上啟下的作用。因此有關(guān)測試人員必須做好集成測試工作。在這一階段,一般采用的是白盒和黑盒結(jié)合的方法進(jìn)行測試,驗(yàn)證這一階段設(shè)計的合理性以及需求功能的實(shí)現(xiàn)性。[2]軟件測試方法系統(tǒng)測試一般情況下,系統(tǒng)測試采用黑盒法來進(jìn)行測試的,以此來檢查該系統(tǒng)是否符合軟件需求。本階段的主要測試內(nèi)容包括健壯性測試、性能測試、功能測試、安裝或反安裝測試、用戶界面測試、壓力測試、可靠性及安全性測試等。無障礙測評認(rèn)定視覺障礙用戶支持功能缺失4項(xiàng)。
這樣做的好處是,融合模型的錯誤來自不同的分類器,而來自不同分類器的錯誤往往互不相關(guān)、互不影響,不會造成錯誤的進(jìn)一步累加。常見的后端融合方式包括**大值融合(max-fusion)、平均值融合(averaged-fusion)、貝葉斯規(guī)則融合(bayes’rulebased)以及集成學(xué)習(xí)(ensemblelearning)等。其中集成學(xué)習(xí)作為后端融合方式的典型**,被廣泛應(yīng)用于通信、計算機(jī)識別、語音識別等研究領(lǐng)域。中間融合是指將不同的模態(tài)數(shù)據(jù)先轉(zhuǎn)化為高等特征表達(dá),再于模型的中間層進(jìn)行融合,如圖3所示。以深度神經(jīng)網(wǎng)絡(luò)為例,神經(jīng)網(wǎng)絡(luò)通過一層一層的管道映射輸入,將原始輸入轉(zhuǎn)換為更高等的表示。中間融合首先利用神經(jīng)網(wǎng)絡(luò)將原始數(shù)據(jù)轉(zhuǎn)化成高等特征表達(dá),然后獲取不同模態(tài)數(shù)據(jù)在高等特征空間上的共性,進(jìn)而學(xué)習(xí)一個聯(lián)合的多模態(tài)表征。深度多模態(tài)融合的大部分工作都采用了這種中間融合的方法,其***享表示層是通過合并來自多個模態(tài)特定路徑的連接單元來構(gòu)建的。中間融合方法的一大優(yōu)勢是可以靈活的選擇融合的位置,但設(shè)計深度多模態(tài)集成結(jié)構(gòu)時,確定如何融合、何時融合以及哪些模式可以融合,是比較有挑戰(zhàn)的問題。字節(jié)碼n-grams、dll和api信息、格式結(jié)構(gòu)信息這三種類型的特征都具有自身的優(yōu)勢。用戶隱私測評確認(rèn)數(shù)據(jù)采集范圍超出聲明條款3項(xiàng)。軟件產(chǎn)品安全測試報告
深圳艾策信息科技:可持續(xù)發(fā)展的 IT 解決方案。電力軟件系統(tǒng)評測價格
在數(shù)字化轉(zhuǎn)型加速的,軟件檢測公司已成為保障各行業(yè)信息化系統(tǒng)穩(wěn)定運(yùn)行的力量。深圳艾策信息科技有限公司作為國內(nèi)軟件檢測公司領(lǐng)域的企業(yè),始終以技術(shù)創(chuàng)新為驅(qū)動力,深耕電力能源、科研教育、政企單位、研發(fā)科技及醫(yī)療機(jī)構(gòu)等垂直場景,為客戶提供從需求分析到運(yùn)維優(yōu)化的全鏈條質(zhì)量保障服務(wù)。以專業(yè)能力筑牢行業(yè)壁壘作為專注于軟件檢測的技術(shù)型企業(yè),艾策科技通過AI驅(qū)動的智能檢測平臺,實(shí)現(xiàn)了測試流程的自動化、化與智能化。其產(chǎn)品——軟件檢測系統(tǒng),整合漏洞掃描、壓力測試、合規(guī)性驗(yàn)證等20余項(xiàng)功能模塊,可快速定位代碼缺陷、性能瓶頸及安全風(fēng)險,幫助客戶將軟件故障率降低60%以上。針對電力能源行業(yè),艾策科技開發(fā)了電網(wǎng)調(diào)度系統(tǒng)專項(xiàng)檢測方案,成功保障某省級電力公司百萬級用戶數(shù)據(jù)安全;在科研教育領(lǐng)域,其實(shí)驗(yàn)室管理軟件檢測服務(wù)覆蓋全國50余所高校,助力科研數(shù)據(jù)存儲與分析的合規(guī)性升級。此外,公司為政企單位政務(wù)云平臺、研發(fā)科技企業(yè)創(chuàng)新產(chǎn)品、醫(yī)療機(jī)構(gòu)智慧醫(yī)療系統(tǒng)提供的定制化檢測服務(wù),均獲得客戶高度認(rèn)可。差異化服務(wù)塑造行業(yè)作為軟件檢測公司,艾策科技突破傳統(tǒng)檢測模式,推出“檢測+培訓(xùn)+咨詢”一體化服務(wù)體系。通過定期發(fā)布行業(yè)安全白皮書、舉辦技術(shù)研討會。電力軟件系統(tǒng)評測價格