廣州在體實(shí)時(shí)監(jiān)測(cè)單光纖成像技術(shù)

來(lái)源: 發(fā)布時(shí)間:2021-12-29

在體光纖成像記錄對(duì)于成像結(jié)果的處理,需要依賴專業(yè)的圖像分析軟件,分割出目的信號(hào)和背景噪聲,獲得準(zhǔn)確的熒光強(qiáng)度值。光學(xué)成像方法可分為基于熒光的方法和基于生物發(fā)光的方法。光學(xué)相對(duì)于設(shè)備小且較便宜。活的物體顯微成像的缺點(diǎn)是它的有創(chuàng)性,因?yàn)樾枰ㄟ^手術(shù)創(chuàng)造一個(gè)窗口來(lái)觀察感興趣的結(jié)構(gòu)和組織。宏觀層析熒光成像可以無(wú)創(chuàng)、定量和三維方式測(cè)定熒光,但其空間分辨率比活的物體顯微鏡低(約1毫米)。光學(xué)成像的根本缺點(diǎn)是光的組織穿透率低。由于吸收和散射,熒光發(fā)射的可見光譜中的光只能穿透幾百微米的組織。這個(gè)問題限制了大多數(shù)光學(xué)方法在小動(dòng)物或人類表面結(jié)構(gòu)研究中的應(yīng)用。使用近紅外光譜能夠提高信號(hào)的組織穿透能力,并能降低了組織的自體熒光。在體光纖成像記錄還應(yīng)保持標(biāo)本相對(duì)位置和形態(tài)的一致。廣州在體實(shí)時(shí)監(jiān)測(cè)單光纖成像技術(shù)

廣州在體實(shí)時(shí)監(jiān)測(cè)單光纖成像技術(shù),在體光纖成像記錄

傳統(tǒng)成像大多依賴于肉眼可見的身體、生理和代謝過程在疾病狀態(tài)下的變化,而不是了解疾病的特異性分子事件;在體光纖成像記錄則是利用在體光纖成像記錄目標(biāo)并成像。這種從非特異性成像到特異性成像的變化,為疾病生物學(xué)、疾病早期檢測(cè)、定性、評(píng)估和療于帶來(lái)了重大的影響。分子成像技術(shù)使活的物體動(dòng)物體內(nèi)成像成為可能,它的出現(xiàn),歸功于分子生物學(xué)和細(xì)胞生物學(xué)的發(fā)展、轉(zhuǎn)基因動(dòng)物模型的使用、新的成像藥物的運(yùn)用、高特異性的探針、小動(dòng)物成像設(shè)備的發(fā)展等諸多因素。武漢在體實(shí)時(shí)影像光纖方案在體光纖成像記錄有望代替?zhèn)鹘y(tǒng)熒光探針。

廣州在體實(shí)時(shí)監(jiān)測(cè)單光纖成像技術(shù),在體光纖成像記錄

在體光纖成像記錄的應(yīng)用,揭示機(jī)體的生理病理改變過程,目前, 在體生物光學(xué)成像技術(shù)己成功應(yīng)用于 干細(xì)胞移植、 壞掉的免疫、 毒血癥、 風(fēng)濕性關(guān)節(jié)炎、 皮炎等發(fā)病機(jī)制的研究中, 可以實(shí)時(shí)監(jiān)測(cè)生物機(jī)體的生理、病理改變過程, 具有重要的臨床意義。藥物的篩選和評(píng)價(jià)的應(yīng)用目前 , 轉(zhuǎn)基因動(dòng)物模型己大量應(yīng)用于病理研究、藥物研發(fā)、 藥物篩選和藥物評(píng)價(jià)等領(lǐng)域。通過體外基因轉(zhuǎn)染或直接注射等手段, 將熒光素酶或綠色熒光蛋 自等報(bào)告基因標(biāo)記在生物體內(nèi)的任何細(xì)胞, 如:壞掉的細(xì)胞、 造血細(xì)胞等上, 采用在體生物光學(xué)成像技術(shù)對(duì)其示蹤, 了解細(xì)胞在生物體內(nèi)的轉(zhuǎn)移規(guī)律,不單能夠檢測(cè)轉(zhuǎn)基因動(dòng)物體 內(nèi)的基因表達(dá)或 內(nèi)源性基因的活性和功能, 而且能夠?qū)λ幬锖Y選及療效進(jìn)行評(píng)價(jià)。

在體光纖成像記錄直接標(biāo)記法不涉及細(xì)胞的遺傳修飾,標(biāo)價(jià)能夠在體外培養(yǎng)時(shí)主動(dòng)與細(xì)胞結(jié)合,也可以將標(biāo)記直接注射到動(dòng)物體內(nèi),間接標(biāo)記法,將報(bào)告基因引入細(xì)胞,并翻譯成酶、受體、熒光或生物發(fā)光蛋白如果報(bào)告基因的表達(dá)是穩(wěn)定的,標(biāo)記的細(xì)胞可以在整個(gè)細(xì)胞的生命周期中被觀察到。由于報(bào)告基因通常被傳遞給后代細(xì)胞,因此細(xì)胞增殖也能夠得到體現(xiàn)。體內(nèi)標(biāo)記是指將探針直接注射進(jìn)入機(jī)體,常用的標(biāo)記方法是靜脈注射氧化鐵納米顆粒。光學(xué)成像方法可分為基于熒光的方法和基于生物發(fā)光的方法。在體光纖成像記錄其他行為學(xué)實(shí)驗(yàn)(攝像拍攝,獎(jiǎng)勵(lì)設(shè)備等)同步時(shí)間標(biāo)記。

廣州在體實(shí)時(shí)監(jiān)測(cè)單光纖成像技術(shù),在體光纖成像記錄

在體監(jiān)測(cè)基因療于中的基因表達(dá),隨著 后基因組時(shí)代的到來(lái)和人們對(duì)疾病發(fā)生的發(fā)展機(jī)制的深入了解, 在基因水平上療于壞掉的、 心血管疾病、 和分子遺傳病等惡性疾病已經(jīng)得到國(guó)內(nèi)外研究人員越來(lái)越 較多的關(guān)注。如何客觀地檢測(cè)基因療于的臨床療效判斷終點(diǎn), 有效監(jiān)測(cè)轉(zhuǎn)基因在生物體內(nèi)的傳送, 并定量檢測(cè)基因療于的轉(zhuǎn)基因表達(dá), 己經(jīng)成為 基因療于應(yīng)用的關(guān)鍵所在 。通過熒光素酶或綠色熒光蛋白等報(bào)告基因, 在體光纖成像記錄能夠進(jìn)行基因表達(dá)的準(zhǔn)確定位和定量分析, 在整體水平上無(wú)創(chuàng)、 實(shí)時(shí)、 定量地檢測(cè)轉(zhuǎn)基因的時(shí)空表達(dá)。實(shí)時(shí)觀測(cè)動(dòng)物在進(jìn)行復(fù)雜行為時(shí)的神經(jīng)投射活動(dòng)。廣州在體實(shí)時(shí)監(jiān)測(cè)單光纖成像技術(shù)

在體光纖成像記錄為一項(xiàng)新興的分子、 基因表達(dá)的分析 檢測(cè)技術(shù)。廣州在體實(shí)時(shí)監(jiān)測(cè)單光纖成像技術(shù)

在體光纖成像記錄系統(tǒng)在成像速度和分辨率方面還存很多不足。在成像系統(tǒng)的傳輸矩陣測(cè)試階段,必須采用SLM 實(shí)現(xiàn)相位調(diào)制,而SLM 器件的響應(yīng)速度比較低,幀率只能達(dá)到幾百赫茲,一些特殊的器件可以達(dá)到20 kHz,但對(duì)于像素為100pixel×100pixel的成像區(qū)域進(jìn)行逐點(diǎn)成像,成像速率只能達(dá)到2 frame/s,在實(shí)際應(yīng)用中有很大的局限性。SLM 器件的光效率較低,體積較大,不利于系統(tǒng)集成和結(jié)構(gòu)微型化。單光纖成像系統(tǒng)需要預(yù)先測(cè)定光纖的傳輸特性(即光纖傳輸矩陣),而傳輸矩陣會(huì)受光纖形態(tài)(如彎曲、壓力和溫度)的影響。如果光纖在使用過程中受到外界的擾動(dòng),那么傳輸矩陣會(huì)發(fā)生變化,對(duì)成像產(chǎn)生較大影響。廣州在體實(shí)時(shí)監(jiān)測(cè)單光纖成像技術(shù)