隨著熒光標(biāo)記技術(shù)和光學(xué)成像技術(shù)的發(fā)展, 在體生物光學(xué)成像(In vivo optical imaging)已經(jīng)發(fā)展 為一項(xiàng)嶄新的分子、 基因表達(dá)的分析檢測技術(shù),在 生命科學(xué)、 醫(yī)學(xué)研究及藥物研發(fā)等領(lǐng)域得到較多應(yīng)用, 主要分為在體生物發(fā)光成像(Bioluminescence imaging,BLI) , 和在體熒光成像,在體光纖成像記錄(Fluorescence imaging)兩種成像方式。 在體生物發(fā)光成像采用熒光素酶基因標(biāo)記細(xì)胞或DNA, 在體熒光成像則采用熒光報(bào)告基團(tuán), 如綠色熒光蛋白, 紅色熒光蛋白等進(jìn)行標(biāo)記 , 利用靈敏的光學(xué)檢測儀器, 如電荷耦合攝像機(jī) (CCD), 觀測活的物體動(dòng)物體內(nèi)疾病的發(fā)生的發(fā)展、 壞掉的的生長及轉(zhuǎn)移、 基因的表達(dá)及反應(yīng)等生物學(xué)過程, 從而監(jiān)測活的物體生物體內(nèi)的細(xì)胞活動(dòng)和基因行為。在體光纖成像記錄能夠?qū)λ幬锖Y選及療效進(jìn)行評價(jià)。黃山在體實(shí)時(shí)監(jiān)測光纖成像記錄技術(shù)
在體光纖成像記錄,指的是利用光學(xué)的探測手段結(jié)合光學(xué)探測分子對細(xì)胞或者組織甚至生物體進(jìn)行成像,來獲得其中的生物學(xué)信息的方法。傳統(tǒng)的動(dòng)物實(shí)驗(yàn)方法需要在不同的時(shí)間點(diǎn)處死實(shí)驗(yàn)動(dòng)物,以獲得多個(gè)時(shí)間點(diǎn)的實(shí)驗(yàn)數(shù)據(jù)。而在體光纖成像記錄則可以對同一觀察目標(biāo)進(jìn)行連續(xù)的查看并記錄其變化,從而達(dá)到簡化實(shí)驗(yàn)的目的。光在體內(nèi)組織中傳播時(shí)會(huì)被散射和吸收,血紅蛋白吸收可見光中藍(lán)綠光波段的大部分,但是波長大于600nm的紅光波段無法被其吸收,可以穿過組織和皮膚被檢測到。在相同的深度情況下,檢測到的發(fā)光強(qiáng)度和細(xì)胞數(shù)量具有線性關(guān)系。光源的發(fā)光強(qiáng)度隨深度增加而衰減,血液豐富的組織/系統(tǒng)衰減多,與骨骼相鄰的組織/系統(tǒng)衰減少。常州鈣熒光指示蛋白病毒影像光纖應(yīng)用在體光纖成像記錄檢測熒光信號(hào)的微弱變化。
在體光纖成像記錄活細(xì)胞成像的安全性,對于被標(biāo)記細(xì)胞的基因表達(dá)譜和蛋白質(zhì)組進(jìn)行分析,可以評估報(bào)告基因?qū)?xì)胞功能的干擾作用。小動(dòng)物活的物體成像技術(shù),活的物體動(dòng)物成像技術(shù)的優(yōu)勢,1、實(shí)現(xiàn)實(shí)時(shí)、無創(chuàng)的在體監(jiān)測 2、發(fā)現(xiàn)早期病變,縮短評價(jià)周期3、評價(jià)更科學(xué),準(zhǔn)確、可靠4、獲得更多的評價(jià)數(shù)5、降低研發(fā)的風(fēng)險(xiǎn)和開支6、更好的遵守3R原則,在體光學(xué)成像技術(shù)的應(yīng)用潛力依賴于光學(xué)成像逆向問題算法的新進(jìn)展.為了解決復(fù)雜生物組織中的非勻質(zhì)問題。
在體光纖成像記錄能夠同時(shí)測量多個(gè)光纖源的光偏振態(tài),開啟了在許多應(yīng)用中通過控制偏振態(tài)創(chuàng)造的反饋回路的可能性。例如,高功率的激光放大器和那些依賴于融合多個(gè)相同性質(zhì)激光束產(chǎn)生高密度局部化光束的無透鏡成像。偏振是實(shí)現(xiàn)高的度激光束控制的關(guān)鍵特性之一。此外,在光學(xué)成像的應(yīng)用中,基于多芯光纖的內(nèi)窺鏡在使用中必須彎曲和移動(dòng)。對每個(gè)光纖的光偏振態(tài)的實(shí)時(shí)監(jiān)測將使科學(xué)家能夠控制并精確光纖激光束,以實(shí)現(xiàn)高分辨率圖像。在這項(xiàng)研究中,研究人員將這兩種技術(shù)應(yīng)用于兩種類型的多芯光纖:保偏多芯光纖和由475個(gè)光纖芯組成的傳統(tǒng)光纖束。在體光纖成像記錄光源的發(fā)光強(qiáng)度隨深度增加而衰減。
在體光纖成像記錄與傳統(tǒng)的醫(yī)學(xué)顯微成像系統(tǒng)相結(jié)合,已形成光纖OCT成像系統(tǒng)、光纖共焦顯微成像系統(tǒng)、關(guān)聯(lián)成像、光纖多光子成像技術(shù)以及三維成像等技術(shù),發(fā)揮了原有顯微系統(tǒng)的長處,可應(yīng)用到更多原來儀器所無法使用的場合。經(jīng)過近10年的發(fā)展,單光纖成像技術(shù)在成像機(jī)理、成像質(zhì)量和應(yīng)用研究等方面都取得了很大的進(jìn)步,為超細(xì)內(nèi)窺鏡技術(shù)的發(fā)展提供了新的方向,并使內(nèi)窺鏡在新領(lǐng)域的應(yīng)用成為可能。近幾年,衍射成像技術(shù)和計(jì)算成像技術(shù)成為新的研究熱點(diǎn),該領(lǐng)域的研究成果為單光纖成像技術(shù)提供了更多的技術(shù)支持。在體光纖成像記錄成像系統(tǒng)是典型的在體熒光成像系統(tǒng)。黃山在體實(shí)時(shí)監(jiān)測光纖成像記錄技術(shù)
現(xiàn)有技術(shù)中的在體光纖成像記錄系統(tǒng)仍包含多根多模光纖。黃山在體實(shí)時(shí)監(jiān)測光纖成像記錄技術(shù)
根據(jù)在體光纖成像記錄成像方式的不同, 在體生物發(fā)光成像主要有生物發(fā)光成像,和生物發(fā)光斷層成像兩種。其中,輸出是二維圖像, 即生物體外探測器上采集的光學(xué)信號(hào),其原理簡單、 使用方便快捷, 適用于 定性分析及簡單的定量計(jì)算, 但無法獲得生物體內(nèi)發(fā)光光源的深度信息, 難以實(shí)現(xiàn)光源的準(zhǔn)確定位。 而成像系統(tǒng)則利用 多個(gè)生物體外探測器上采集的光學(xué)信號(hào), 根據(jù)斷層成像的原理, 采用特定的 反演算法 ,得到活的物體小動(dòng)物體 內(nèi)發(fā)光光源的精確位置信息。目前, BLT的光源定位和生物組織光學(xué)特性參數(shù)的反演問題 已經(jīng)成為國內(nèi)外在體生物光學(xué)成像研究的重點(diǎn)和難點(diǎn)之一, 但還限于于實(shí)驗(yàn)室研究階段, 沒有達(dá)到臨床實(shí)驗(yàn)的階段, 所 以尚未有成熟的成像系統(tǒng)。黃山在體實(shí)時(shí)監(jiān)測光纖成像記錄技術(shù)