在體光纖成像記錄可見光成像體內可見光成像包括生物發(fā)光與熒光兩種技術。生物發(fā)光是用熒光素酶基因標記DNA,利用其產生的蛋白酶與相應底物發(fā)生生化反應產生生物體內的光信號;而熒光技術則采用熒光報告基因(GFP、RFP)或熒光染料(包括熒光量子點)等新型納米標記材料進行標記,利用報告基因產生的生物發(fā)光、熒光蛋白質或染料產生的熒光就可以形成體內的生物光源。前者是動物體內的自發(fā)熒光,不需要激發(fā)光源,而后者則需要外界激發(fā)光源的激發(fā)。實時觀測動物在進行復雜行為時的神經投射活動。連云港蛋白病毒光纖成像記錄技術網站
隨著熒光標記技術和光學成像技術的發(fā)展, 在體生物光學成像(In vivo optical imaging)已經發(fā)展 為一項嶄新的分子、 基因表達的分析檢測技術,在 生命科學、 醫(yī)學研究及藥物研發(fā)等領域得到較多應用, 主要分為在體生物發(fā)光成像(Bioluminescence imaging,BLI) , 和在體熒光成像,在體光纖成像記錄(Fluorescence imaging)兩種成像方式。 在體生物發(fā)光成像采用熒光素酶基因標記細胞或DNA, 在體熒光成像則采用熒光報告基團, 如綠色熒光蛋白, 紅色熒光蛋白等進行標記 , 利用靈敏的光學檢測儀器, 如電荷耦合攝像機 (CCD), 觀測活的物體動物體內疾病的發(fā)生的發(fā)展、 壞掉的的生長及轉移、 基因的表達及反應等生物學過程, 從而監(jiān)測活的物體生物體內的細胞活動和基因行為。連云港蛋白病毒光纖成像記錄技術網站在體光纖成像記錄硬件也有助于保證較高的成像質量。
在體光纖成像記錄在自由活動動物的深部腦區(qū)實現(xiàn)光信號記錄和神經細胞活性調控;高質量,亞細胞分辨率的成像;多波長成像,實現(xiàn)較多的鈣離子成像(GCaMP or RCaMP),和光遺傳實驗,特定目標光刺激;在體光纖成像系統(tǒng)是模塊化設計,使用者擁有很高的靈活性,可以隨時根據(jù)研究需要對系統(tǒng)進行調整,比如調整光源,波長,濾光片,相機等。在深部腦區(qū)選定的特定神經細胞或部分獲得連續(xù)的實驗數(shù)據(jù)流,然后對單細胞提取密度軌跡。鈣離子成像軌跡也可以被同步,與其他行為學實驗(攝像拍攝,獎勵設備等)同步時間標記。
在體光纖成像記錄直接標記法不涉及細胞的遺傳修飾,標價能夠在體外培養(yǎng)時主動與細胞結合,也可以將標記直接注射到動物體內,間接標記法,將報告基因引入細胞,并翻譯成酶、受體、熒光或生物發(fā)光蛋白如果報告基因的表達是穩(wěn)定的,標記的細胞可以在整個細胞的生命周期中被觀察到。由于報告基因通常被傳遞給后代細胞,因此細胞增殖也能夠得到體現(xiàn)。體內標記是指將探針直接注射進入機體,常用的標記方法是靜脈注射氧化鐵納米顆粒。光學成像方法可分為基于熒光的方法和基于生物發(fā)光的方法。用成熟的在體光纖成像記錄進行體外檢測。
在體監(jiān)測基因療于中的基因表達,隨著 后基因組時代的到來和人們對疾病發(fā)生的發(fā)展機制的深入了解, 在基因水平上療于壞掉的、 心血管疾病、 和分子遺傳病等惡性疾病已經得到國內外研究人員越來越 較多的關注。如何客觀地檢測基因療于的臨床療效判斷終點, 有效監(jiān)測轉基因在生物體內的傳送, 并定量檢測基因療于的轉基因表達, 己經成為 基因療于應用的關鍵所在 。通過熒光素酶或綠色熒光蛋白等報告基因, 在體光纖成像記錄能夠進行基因表達的準確定位和定量分析, 在整體水平上無創(chuàng)、 實時、 定量地檢測轉基因的時空表達。在體光纖成像記錄就是生物樣本的造影技術。連云港蛋白病毒光纖成像記錄技術網站
在體光纖成像記錄直接標記法不涉及細胞的遺傳修飾。連云港蛋白病毒光纖成像記錄技術網站
在體光纖成像記錄能夠同時測量多個光纖源的光偏振態(tài),開啟了在許多應用中通過控制偏振態(tài)創(chuàng)造的反饋回路的可能性。例如,高功率的激光放大器和那些依賴于融合多個相同性質激光束產生高密度局部化光束的無透鏡成像。偏振是實現(xiàn)高的度激光束控制的關鍵特性之一。此外,在光學成像的應用中,基于多芯光纖的內窺鏡在使用中必須彎曲和移動。對每個光纖的光偏振態(tài)的實時監(jiān)測將使科學家能夠控制并精確光纖激光束,以實現(xiàn)高分辨率圖像。在這項研究中,研究人員將這兩種技術應用于兩種類型的多芯光纖:保偏多芯光纖和由475個光纖芯組成的傳統(tǒng)光纖束。連云港蛋白病毒光纖成像記錄技術網站