常州鈣熒光光纖成像應(yīng)用

來源: 發(fā)布時(shí)間:2022-02-17

目前大部分高水平的文章還是應(yīng)用生物發(fā)光的方法來研究活的物體動(dòng)物體內(nèi)成像。但是,熒光成像有其方便,直觀,標(biāo)記靶點(diǎn)多樣和易于被大多數(shù)研究人員接受的優(yōu)點(diǎn),在一些植物分子生物學(xué)研究和觀察小分子體內(nèi)代謝方面也得到應(yīng)用。對(duì)于不同的研究,可根據(jù)兩者的特點(diǎn)以及實(shí)驗(yàn)要求,選擇合適的方法。例如利用綠色熒光蛋白和熒光素酶對(duì)細(xì)胞或動(dòng)物進(jìn)行雙重標(biāo)記,用成熟的在體光纖成像記錄進(jìn)行體外檢測(cè),進(jìn)行分子生物學(xué)和細(xì)胞生物學(xué)研究,然后利用生物發(fā)光技術(shù)進(jìn)行動(dòng)物體內(nèi)檢測(cè),進(jìn)行活的物體動(dòng)物體內(nèi)研究。在體光纖成像記錄還應(yīng)保持標(biāo)本相對(duì)位置和形態(tài)的一致。常州鈣熒光光纖成像應(yīng)用

常州鈣熒光光纖成像應(yīng)用,在體光纖成像記錄

在體光纖成像記錄系統(tǒng)在成像速度和分辨率方面還存很多不足。在成像系統(tǒng)的傳輸矩陣測(cè)試階段,必須采用SLM 實(shí)現(xiàn)相位調(diào)制,而SLM 器件的響應(yīng)速度比較低,幀率只能達(dá)到幾百赫茲,一些特殊的器件可以達(dá)到20 kHz,但對(duì)于像素為100pixel×100pixel的成像區(qū)域進(jìn)行逐點(diǎn)成像,成像速率只能達(dá)到2 frame/s,在實(shí)際應(yīng)用中有很大的局限性。SLM 器件的光效率較低,體積較大,不利于系統(tǒng)集成和結(jié)構(gòu)微型化。單光纖成像系統(tǒng)需要預(yù)先測(cè)定光纖的傳輸特性(即光纖傳輸矩陣),而傳輸矩陣會(huì)受光纖形態(tài)(如彎曲、壓力和溫度)的影響。如果光纖在使用過程中受到外界的擾動(dòng),那么傳輸矩陣會(huì)發(fā)生變化,對(duì)成像產(chǎn)生較大影響。常州鈣熒光光纖成像應(yīng)用在體光纖成像記錄能夠聚集在特定的組織系統(tǒng)。

常州鈣熒光光纖成像應(yīng)用,在體光纖成像記錄

小動(dòng)物在體光纖成像記錄具有靈敏度高、直觀、操作簡(jiǎn)單、能同時(shí)觀測(cè)多個(gè)實(shí)驗(yàn)標(biāo)本,相比 PET、SPECT 無放射損害等優(yōu)點(diǎn),但也有其自身的缺陷,例如動(dòng)物組織對(duì)光子吸收、空間分辨率較低等問題,因而仍需不斷地完善和改進(jìn)。小動(dòng)物活的物體成像按成像性質(zhì)屬于功能成像,如何能更好地與結(jié)構(gòu)成像技術(shù)相結(jié)合,使實(shí)驗(yàn)結(jié)果不但能夠定量,而且還能精確定位,這是活的物體成像技術(shù)今后的發(fā)展方向之一。成像技術(shù)可以提供的數(shù)據(jù)有對(duì)的定量和相對(duì)定量?jī)煞N。

在體光纖成像記錄的工作原理是將光源入射的光束經(jīng)由光纖送入調(diào)制器,在調(diào)制器內(nèi)與外界被測(cè)參數(shù)的相互作用, 使光的光學(xué)性質(zhì)如光的強(qiáng)度、波長(zhǎng)、頻率、相位、偏振態(tài)等發(fā)生變化,成為被調(diào)制的光信號(hào),再經(jīng)過光纖送入光電器件、經(jīng)解調(diào)器后獲得被測(cè)參數(shù)。整個(gè)過程中,光束經(jīng)由光纖導(dǎo)入,通過調(diào)制器后再射出,其中光纖的作用首先是傳輸光束,其次是起到光調(diào)制器的作用。波長(zhǎng)為2.0~1000微米的部分稱為熱紅外線。我們周圍的物體只有當(dāng)它們的溫度高達(dá)1000℃以上時(shí),才能夠發(fā)出可見光。相比之下,我們周圍所有溫度在對(duì)的零度(-273℃)以上的物體,都會(huì)不停地發(fā)出熱紅外線。所以,熱紅外線(或稱熱輻射)是自然界中存在較為較多的輻射。在體光纖成像記錄用于生成首先一光束。

常州鈣熒光光纖成像應(yīng)用,在體光纖成像記錄

在體光纖成像記錄能夠同時(shí)測(cè)量多個(gè)光纖源的光偏振態(tài),開啟了在許多應(yīng)用中通過控制偏振態(tài)創(chuàng)造的反饋回路的可能性。例如,高功率的激光放大器和那些依賴于融合多個(gè)相同性質(zhì)激光束產(chǎn)生高密度局部化光束的無透鏡成像。偏振是實(shí)現(xiàn)高的度激光束控制的關(guān)鍵特性之一。此外,在光學(xué)成像的應(yīng)用中,基于多芯光纖的內(nèi)窺鏡在使用中必須彎曲和移動(dòng)。對(duì)每個(gè)光纖的光偏振態(tài)的實(shí)時(shí)監(jiān)測(cè)將使科學(xué)家能夠控制并精確光纖激光束,以實(shí)現(xiàn)高分辨率圖像。在這項(xiàng)研究中,研究人員將這兩種技術(shù)應(yīng)用于兩種類型的多芯光纖:保偏多芯光纖和由475個(gè)光纖芯組成的傳統(tǒng)光纖束。在體光纖成像記錄就是生物樣本的造影技術(shù)。莆田腦立體定位光纖記錄

在體光纖成像記錄調(diào)整光源,波長(zhǎng),濾光片,相機(jī)。常州鈣熒光光纖成像應(yīng)用

在體光纖成像記錄納米級(jí)成像受到所用光的波長(zhǎng)的限制。有多種方法可以克服這一衍射極限,但它們通常需要大型顯微鏡和困難的加工程序?!边@些系統(tǒng)不適用于在生物組織的深層或其他難以到達(dá)的地方成像。在傳統(tǒng)的顯微鏡檢查中,通常會(huì)逐點(diǎn)照射樣品以產(chǎn)生整個(gè)樣品的圖像。這需要大量時(shí)間,因?yàn)楦叻直媛蕡D像需要許多數(shù)據(jù)點(diǎn)。壓縮成像要快得多,但是我們也證明了它能夠分辨比傳統(tǒng)衍射極限成像所能分辨的小兩倍以上的細(xì)節(jié)。開發(fā)考慮了微創(chuàng)生物成像。但這對(duì)于納米光刻技術(shù)中的傳感應(yīng)用也非常具有前途,因?yàn)樗恍枰獰晒鈽?biāo)記,而熒光標(biāo)記是其他超分辨率成像方法所必需的。常州鈣熒光光纖成像應(yīng)用