湖南爐前AOI生產(chǎn)

來源: 發(fā)布時間:2022-01-15

    本系統(tǒng)采用的卷積神經(jīng)網(wǎng)絡(luò)(ConvolutionalNeuralNetworks,CNN)是一類包含卷積計算且具有深度結(jié)構(gòu)的前饋神經(jīng)網(wǎng)(FeedforwardNeuralNetworks),是深度學(xué)習(xí)(deeplearning)的表示算法之一。卷積神經(jīng)網(wǎng)絡(luò)仿造生物的視知覺(visualperception)機制構(gòu)建,可以進行監(jiān)督學(xué)習(xí)和非監(jiān)督學(xué)習(xí)。作為圖像識別領(lǐng)域的算法之一,卷積神經(jīng)網(wǎng)絡(luò)在學(xué)習(xí)數(shù)據(jù)充足時有穩(wěn)定的表現(xiàn)。針對本系統(tǒng)所處理的大規(guī)模圖像分類問題,卷積神經(jīng)網(wǎng)絡(luò)將用于提取圖像的判別特征,再通過分類器進行學(xué)習(xí)和識別。畫面顯示:1、主圖畫面都有顯示器件框,便于觀察器件是否被識別;2、根據(jù)底板顏色可以自由選擇器件框顏色;3、可依據(jù)客戶需求,自由定義器件中文名;4、不良器件圖靜態(tài)顯示;程序制作靈活性:1、無需設(shè)置參數(shù);2、在線抓拍首件板系統(tǒng)輔助做程序,且支持持續(xù)補充學(xué)習(xí),學(xué)習(xí)后自動建模比例更高(80%+);---自動框圖器件種類多(60+),比例高。3、支持中文、英文、中英文混合輸入;4、批量復(fù)制、粘貼、剪切、刪除等支持快捷鍵操作。---硬件條件和安裝尺寸不發(fā)生變化。 主要用于生產(chǎn)問題明確、數(shù)量和速度為關(guān)鍵因素、產(chǎn)品混合度高的產(chǎn)品的檢測。湖南爐前AOI生產(chǎn)

湖南爐前AOI生產(chǎn),AOI

    圖像采集階段(光學(xué)掃描和數(shù)據(jù)收集)AOI的圖像采集系統(tǒng)主要包括光電轉(zhuǎn)化攝影系統(tǒng),照明系統(tǒng)和控制系統(tǒng)三個部分。因為攝影得到的圖像被用于與模板做對比,所以獲取的圖像信息準(zhǔn)確性對于檢測結(jié)果非常重要,可以想象一下,如果圖像采集器看不清楚或看不到被檢測物體的特征點,那么也就無法談到準(zhǔn)確的檢出。下面我們對光電轉(zhuǎn)化攝影系統(tǒng),照明系統(tǒng)和控制系統(tǒng)三個部分逐一分析介紹。首先,光電轉(zhuǎn)化攝影系統(tǒng)指的是光電二極管器件和與之搭配的成像系統(tǒng)。是獲得圖像的”眼睛”,原理都是光電二極管接受到被檢測物體反射的光線,光能轉(zhuǎn)化產(chǎn)生電荷,轉(zhuǎn)化后的電荷被光電傳感器中的電子元件收集,傳輸形成電壓模擬信號。二極管吸收光線強度不同時生成的模擬電壓大小不同,依次輸出模擬電壓值被轉(zhuǎn)化為數(shù)字灰階0-255值,灰階值反映了物體反射光的強弱,進而實現(xiàn)識別不同被檢測物體的目的。 AOI銷售AOI通過人工光源LED燈光代替自然光,光學(xué)透鏡和CCD代替人眼,已經(jīng)編好程的標(biāo)準(zhǔn)進行比較、分析和判斷。

湖南爐前AOI生產(chǎn),AOI

  AOI檢測技術(shù)應(yīng)運而生的背景是電子元件集成度與精細(xì)化程度高,檢測速度與效率更高,檢測零缺陷的發(fā)展需求。AOI檢測的比較大的優(yōu)點是節(jié)省人力,降低成本,提高生產(chǎn)效率,統(tǒng)一檢測標(biāo)準(zhǔn)和排除人為因素干擾,保證了檢測結(jié)果的穩(wěn)定性,可重復(fù)性和準(zhǔn)確性,及時發(fā)現(xiàn)產(chǎn)品的不良,確保出貨質(zhì)量。在人工智能技術(shù)與大數(shù)據(jù)發(fā)展進步中,AOI檢測不僅是一部檢測設(shè)備,對大量不良結(jié)果進行分類和統(tǒng)計,可以發(fā)現(xiàn)不良發(fā)生的原因,在工藝改善和生產(chǎn)良率提升中也正逐步發(fā)揮著更重要的作用,因此,可以預(yù)期未來AOI檢測技術(shù)將在半導(dǎo)體與電子電路檢測中將會發(fā)揮越來越重要的作用。

在現(xiàn)代工業(yè)自動化生產(chǎn)中,連續(xù)大批量生產(chǎn)中每一個制作過程都是有一定的次品率的,單獨去看雖然比率很小,但是相乘后卻成為企業(yè)難以提高良率的重要瓶頸,并且在經(jīng)過完整制程后再次去剔除次品,成本會高很多(例如,如果錫膏印刷工序存在定位偏差,且該問題直到芯片貼裝后的在線測試才被發(fā)現(xiàn),那么返修的成本將會是原成本的100倍以上),因此及時檢測以及次品剔除對質(zhì)量控制和成本控制是非常重要的,也是制造業(yè)進一步升級的重要基石。人認(rèn)識物體是通過光線反射回來的量進行判斷,反射量多為亮,反射量少為暗。AOI與人判斷原理相同。

湖南爐前AOI生產(chǎn),AOI

AOI的圖像采集系統(tǒng)主要包括光電轉(zhuǎn)化攝影系統(tǒng),照明系統(tǒng)和控制系統(tǒng)三個部分。因為攝影得到的圖像被用于與模板做對比,所以獲取的圖像信息準(zhǔn)確性對于檢測結(jié)果非常重要,可以想象一下,如果圖像采集器看不清楚或看不到被檢測物體的特征點,那么也就無法談到準(zhǔn)確的檢出。下面我們對光電轉(zhuǎn)化攝影系統(tǒng),照明系統(tǒng)和控制系統(tǒng)三個部分逐一分析介紹。首先,光電轉(zhuǎn)化攝影系統(tǒng)指的是光電二極管器件和與之搭配的成像系統(tǒng)。是獲得圖像的”眼睛”,原理都是光電二極管接受到被檢測物體反射的光線,光能轉(zhuǎn)化產(chǎn)生電荷,轉(zhuǎn)化后的電荷被光電傳感器中的電子元件收集,傳輸形成電壓模擬信號。二極管吸收光線強度不同時生成的模擬電壓大小不同,依次輸出模擬電壓值被轉(zhuǎn)化為數(shù)字灰階0-255值,灰階值反映了物體反射光的強弱,進而實現(xiàn)識別不同被檢測物體的目的。伴隨著元器件的微型化、細(xì)間距化等密度特征越來越明顯,生產(chǎn)品質(zhì)以及產(chǎn)能的需求不斷擴增。江蘇不需要設(shè)置參數(shù)的AOI光學(xué)檢測

AOI的圖像采集系統(tǒng)主要包括光電轉(zhuǎn)化攝影系統(tǒng),照明系統(tǒng)和控制系統(tǒng)三個部分。湖南爐前AOI生產(chǎn)

畫面顯示:1、主圖畫面都有顯示器件框,便于觀察器件是否被識別;2、根據(jù)底板顏色可以自由選擇器件框顏色;3、可依據(jù)客戶需求,自由定義器件中文名;4、不良器件圖靜態(tài)顯示;程序制作靈活性:1、無需設(shè)置參數(shù);2、在線抓拍首件板系統(tǒng)輔助做程序,且支持持續(xù)補充學(xué)習(xí),學(xué)習(xí)后自動建模比例更高(80%+);---自動框圖器件種類多(60+),比例高。3、支持中文、英文、中英文混合輸入;4、批量復(fù)制、粘貼、剪切、刪除等支持快捷鍵操作。---硬件條件和安裝尺寸不發(fā)生變化,已做好的模板可長久正常使用湖南爐前AOI生產(chǎn)

深圳愛為視智能科技有限公司致力于機械及行業(yè)設(shè)備,是一家其他型公司。愛為視致力于為客戶提供良好的智能視覺檢測設(shè)備,一切以用戶需求為中心,深受廣大客戶的歡迎。公司注重以質(zhì)量為中心,以服務(wù)為理念,秉持誠信為本的理念,打造機械及行業(yè)設(shè)備良好品牌。愛為視立足于全國市場,依托強大的研發(fā)實力,融合前沿的技術(shù)理念,飛快響應(yīng)客戶的變化需求。

標(biāo)簽: AOI