肺臟類器官芯片常見問題

來源: 發(fā)布時間:2022-10-13

技術(shù)的開發(fā)必須考慮到用戶,并且其設(shè)計應(yīng)極大限度地提高可用性和可重復(fù)性。提供與自動化兼容的高通量功能可以激勵研究人員,使他們受益于效率的提高和人工成本的降低。在某些情況下,器官芯片還可以減少動物試驗,細(xì)胞和試劑的成本,因為許多微流控設(shè)備需要更小的體積。為了延長MPS模型的壽命,巨大的努力已經(jīng)導(dǎo)向為長期實驗提供更大的窗口,可以進(jìn)行復(fù)合劑量和疾病進(jìn)展的觀察,腸道屏障功能的體外模型和肝病模型已經(jīng)可以維持?jǐn)?shù)周。英國CNBio的Physiomimix器官芯片正是基于實現(xiàn)此遠(yuǎn)大目標(biāo)而應(yīng)運而生。 與2D和3D細(xì)胞培養(yǎng)相比,由于器官芯片的采用率激增,北美在全球器官芯片領(lǐng)域占據(jù)主導(dǎo)地位.肺臟類器官芯片常見問題

肺臟類器官芯片常見問題,器官芯片

通過提高通過標(biāo)準(zhǔn)工具識別風(fēng)險的可預(yù)測性,或者通過提供其他方式無法獲得的更合適的模型,器官芯片有望填補許多空白。揭示原本不會被發(fā)現(xiàn)的毒性或揭示藥物不良事件之前的細(xì)胞功能變化的能力為具有重要價值。但是,為了更好地發(fā)揮器官芯片的潛力,應(yīng)該將這些先進(jìn)的體外模型收集到的見解與體內(nèi)數(shù)據(jù)進(jìn)行比較。除了用于藥物開發(fā),器官芯片還可在多個領(lǐng)域發(fā)揮無可比擬的作用,包括環(huán)境毒理學(xué)評估,疾病模型研究,化妝品有效和安全性評估等。英國CNBio的Physiomimix器官芯片正是基于實現(xiàn)此遠(yuǎn)大目標(biāo)而應(yīng)運而生。 肺器官芯片官方代理商器官芯片的工作原理。

肺臟類器官芯片常見問題,器官芯片

英國CNBio的器官芯片系統(tǒng),包括PhysioMimix實驗室臺式儀器,使研究人員能夠通過快速且預(yù)測性的基于人體組織的研究在實驗室中對人體生物學(xué)進(jìn)行建模。該技術(shù)彌補了傳統(tǒng)細(xì)胞培養(yǎng)與人類研究之間的空白,并朝著模擬人類生物學(xué)條件前進(jìn),以支持新療法的加速發(fā)展。應(yīng)用范圍包括傳染病,新陳代謝和炎癥。利用器官芯片平臺PhysioMimix,我們生成了NAFLD的人源體外模型。PHH在含脂肪的培養(yǎng)基中培養(yǎng),該培養(yǎng)基誘導(dǎo)了臨床疾病早期階段的關(guān)鍵特征,包括細(xì)胞內(nèi)脂肪負(fù)載,白蛋白產(chǎn)生增加和關(guān)鍵基因表達(dá)的變化(包括那些與代謝和胰島素抵抗有關(guān)的基因)。 

我們所有的微生理(MPS)耗材板與CNBioInnovations開發(fā)的PhysioMimix桌面型器官芯片系統(tǒng)配套使用。MPS耗材板的每個孔都是隔離的液流系統(tǒng),可用于同時進(jìn)行多個平行的實驗。PhysioMimix器官芯片允許科學(xué)家在整個實驗過程中取樣進(jìn)行分析,提供數(shù)據(jù)和實驗進(jìn)度的實時監(jiān)控。監(jiān)測包括生物標(biāo)記物分析、細(xì)胞形態(tài)可視化成像、細(xì)胞遷移和蛋白質(zhì)標(biāo)記物定位;但重要的是,實驗可以繼續(xù)進(jìn)行。PhysioMimix器官芯片支持使用微流體將兩個或多個組織系統(tǒng)連接起來的使用案例。這類實驗提供了非常有價值的數(shù)據(jù),可揭示多個器guan如何相互作用和對刺激的反應(yīng)。與2D和3D細(xì)胞培養(yǎng)相比,由于器官芯片的采用率激增,北美在全球器官芯片領(lǐng)域占據(jù)主導(dǎo)地位。

肺臟類器官芯片常見問題,器官芯片

在一項毒理學(xué)研究中證明了在單器官芯片中灌注肝細(xì)胞的價值,該研究捕獲了一個已經(jīng)明確的肝毒su的作用,并揭示了其類似物(以前被低估)毒性的新穎見解。代謝物以劑量依賴性方式形成,類似于患者用藥過量的情況,白蛋白分泌和谷胱甘肽耗竭測量分別評估肝細(xì)胞功能和毒性。而研究人員意識到,由單一細(xì)胞類型組成的MPS并不能為所有代謝研究提供完整的解決方案。為了提供更緊密地反映體內(nèi)肝臟微體系結(jié)構(gòu)復(fù)雜性的器g樣模型。已經(jīng)使用多種細(xì)胞類型創(chuàng)建了共培養(yǎng)模型。 器官芯片(OOC)研究被譽為更快、更準(zhǔn)確的藥物開發(fā)和精確醫(yī)學(xué)的關(guān)鍵。腸道類器官芯片

與2D和3D細(xì)胞培養(yǎng)相比,由于器官芯片的采用率激增,北美在全球器官芯片領(lǐng)域占據(jù)主導(dǎo)地位。肺臟類器官芯片常見問題

器官芯片模型的可用性為理解人類疾病的發(fā)病機制提供了大量機會,并為篩選藥物提供了潛在的更好模型,因為這些模型利用了類似于人體的動態(tài)3D環(huán)境。盡管芯片上器guan模型存在局限性,但新技術(shù)的出現(xiàn)提高了其轉(zhuǎn)化研究和精確醫(yī)學(xué)的能力。全球器官芯片市場按型號和用戶進(jìn)行細(xì)分。模型類型包括肝芯片模型,肺芯片模型、心臟芯片模型、腎芯片模型,定制和多器官芯片模型等,用戶包括制藥公司,研究機構(gòu)等。器官芯片有潛力為生理相關(guān)的體外藥物測試提供更好的試驗預(yù)測,能避免由于2D細(xì)胞培養(yǎng)和動物實驗等模型缺乏預(yù)測性而導(dǎo)致的失敗。英國CNBio的Physiomimix器官芯片正是基于實現(xiàn)此遠(yuǎn)大目標(biāo)而應(yīng)運而生。更多關(guān)于CNBio器官芯片的內(nèi)容歡迎咨詢上海曼博生物!肺臟類器官芯片常見問題

上海曼博生物醫(yī)藥科技有限公司成立于2019-02-15,同時啟動了以PL Bioscienc,Quan-Lab,Polysciences,Sirion Biote,CN-Bio,Dharmacon,Horizon,Pfenex,Visual Prote為主的血小板裂解液,WB自動孵育系統(tǒng),微流控器官芯片,藍(lán)牙無線標(biāo)簽機產(chǎn)業(yè)布局。業(yè)務(wù)涵蓋了血小板裂解液,WB自動孵育系統(tǒng),微流控器官芯片,藍(lán)牙無線標(biāo)簽機等諸多領(lǐng)域,尤其血小板裂解液,WB自動孵育系統(tǒng),微流控器官芯片,藍(lán)牙無線標(biāo)簽機中具有強勁優(yōu)勢,完成了一大批具特色和時代特征的醫(yī)藥健康項目;同時在設(shè)計原創(chuàng)、科技創(chuàng)新、標(biāo)準(zhǔn)規(guī)范等方面推動行業(yè)發(fā)展。我們在發(fā)展業(yè)務(wù)的同時,進(jìn)一步推動了品牌價值完善。隨著業(yè)務(wù)能力的增長,以及品牌價值的提升,也逐漸形成醫(yī)藥健康綜合一體化能力。值得一提的是,曼博生物致力于為用戶帶去更為定向、專業(yè)的醫(yī)藥健康一體化解決方案,在有效降低用戶成本的同時,更能憑借科學(xué)的技術(shù)讓用戶極大限度地挖掘PL Bioscienc,Quan-Lab,Polysciences,Sirion Biote,CN-Bio,Dharmacon,Horizon,Pfenex,Visual Prote的應(yīng)用潛能。