術(shù)語解釋:Cox回歸:又稱比例風(fēng)險回歸模型(proportionalhazardsmodel,簡稱Cox模型),是由英國統(tǒng)計學(xué)家。該模型以生存結(jié)局和生存時間為應(yīng)變量,可同時分析多種因素對于生存期長短的影響。Cox模型能分析帶有截尾生存時間的資料,且不要求估計資料的生存分布類型,因此在醫(yī)學(xué)界被***使用。Logistic回歸:又稱邏輯回歸模型,屬于廣義線性模型。邏輯回歸是一種用于解決二分類問題的分析方法,用于估計某種事物的可能性。相較于傳統(tǒng)線性模型,邏輯回歸模型以概率形式輸出結(jié)果,可控性高且結(jié)果可解釋性強。數(shù)據(jù)要求:樣本臨床信息或生物學(xué)特征(基因突變、基因表達(dá)等)樣本的隨訪數(shù)據(jù)(總生存期,生存狀態(tài))或樣本的分組情況下游分析:1.補充相關(guān)因素的已有相關(guān)研究2.解釋相關(guān)因素對研究課題的意義。 云生物提供數(shù)據(jù)科學(xué)服務(wù)。四川成果發(fā)表指導(dǎo)數(shù)據(jù)科學(xué)方案
PCA主成分分析測序技術(shù)的發(fā)展使得現(xiàn)在能夠從宏觀角度分析基因表達(dá),但是也在一定程度上增加了數(shù)據(jù)分析難度。許多基因之間可能存在相關(guān)性,如果分別對每個基因進行分析,分析往往是孤立的,盲目減少指標(biāo)會損失很多有用的信息。PCA(PrincipalComponentAnalysis),即主成分分析方法,是一種使用*****的數(shù)據(jù)降維算法。一般可應(yīng)用的研究方向有:一組基因在多個分組中的差異情況,多個基因在該樣本中的差異情況?;驹鞵CA的主要思想是將n維特征映射到k維上,這k維是全新的正交特征也被稱為主成分,是在原有n維特征的基礎(chǔ)上重新構(gòu)造出來的k維特征。PCA的工作就是從原始的空間中順序地找一組相互正交的坐標(biāo)軸,新的坐標(biāo)軸的選擇與數(shù)據(jù)本身是密切相關(guān)的。其中,**個新坐標(biāo)軸選擇是原始數(shù)據(jù)中方差**的方向,第二個新坐標(biāo)軸選取是與**個坐標(biāo)軸正交的平面中使得方差**的,第三個軸是與第1,2個軸正交的平面中方差**的。依次類推,可以得到n個這樣的坐標(biāo)軸。通過這種方式獲得的新的坐標(biāo)軸,我們發(fā)現(xiàn),大部分方差都包含在前面k個坐標(biāo)軸中,后面的坐標(biāo)軸所含的方差幾乎為0。于是,我們可以忽略余下的坐標(biāo)軸,只保留前面k個含有絕大部分方差的坐標(biāo)軸。事實上。 四川算法還原與開發(fā)數(shù)據(jù)科學(xué)方案參考國內(nèi)外數(shù)據(jù)資源,根據(jù)需求制定構(gòu)建方案。
GeneInteraction基因互作:基因相互作用指miRNA、lncRNA、circRNA或其它RNA介導(dǎo)DNA轉(zhuǎn)錄,從而影響mRNA的表達(dá)過程。通俗意義上來說,基因互作關(guān)系指基于序列預(yù)測的靶基因?qū)?。miRNA通過與靶mRNA的結(jié)合,或促使mRNA降解,或阻礙其翻譯,從而***目的基因的表達(dá)。競爭性內(nèi)源RNA網(wǎng)絡(luò)是靶基因預(yù)測的研究深入,簡稱ceRNA網(wǎng)絡(luò)。通過進行ceRNA網(wǎng)絡(luò)的分析,我們能從一個更為宏觀的角度來解釋轉(zhuǎn)錄體如何構(gòu)建基因表達(dá)調(diào)控網(wǎng)絡(luò),從而進一步挖掘基因在其中的調(diào)控機制?;驹恚簃iRNA主要通過與靶基因的非翻譯區(qū)(UTR)結(jié)合而發(fā)揮其作用,對miRNA和mRNA、lncRNA、circRNA結(jié)合進行的預(yù)測稱為靶基因預(yù)測。靶基因預(yù)測使用軟件根據(jù)miRNA和靶基因間的結(jié)合的規(guī)律預(yù)測結(jié)合基因?qū)?。在生物體內(nèi),miRNA可以通過與proteincoding特異性結(jié)合,影響相關(guān)基因的表達(dá),從而參與調(diào)控細(xì)胞內(nèi)的各項功能。ceRNA具有miRNA結(jié)合位點,能后競爭性地結(jié)合miRNA,***miRNA對靶基因的調(diào)控。例如lncRNA與miRNA競爭性結(jié)合,影響miRNA調(diào)控mRNA的過程,**終導(dǎo)致的mRNA表達(dá)失調(diào)。我們使用基于序列預(yù)測的軟件對差異分析得到的miRNA與mRNA,lncRNA,circRNA進行靶點預(yù)測和ceRNA網(wǎng)絡(luò)分析。
三角坐標(biāo)統(tǒng)計圖是采用數(shù)字坐標(biāo)形式來表現(xiàn)三項要素的數(shù)字信息圖像。三角形坐標(biāo)圖常用百分?jǐn)?shù)(%)來表示某項要素與整體的結(jié)構(gòu)比例。三條邊分別表示三個不同分量,三個頂點可以看作是三個原點。三角圖可以展示某特定值在一個整體中不同類型的分布。在生物信息中三角圖可以方便地展示3種不同疾病或者3個不同分組之間某個指標(biāo)的相關(guān)性。
數(shù)據(jù)要求
多個樣本的三個變量值,或者多個基因在三個不同分組中的數(shù)據(jù)值,可以是突變頻率數(shù)據(jù)、基因表達(dá)數(shù)據(jù)、甲基化數(shù)據(jù)等。 生物醫(yī)學(xué)科研領(lǐng)域的組學(xué)數(shù)據(jù)處理。
immune-network免疫網(wǎng)絡(luò)**微環(huán)境(TME)是**周圍的環(huán)境,包括周圍血管,免疫細(xì)胞,成纖維細(xì)胞,信號分子和細(xì)胞外基質(zhì)(ECM)。**與周圍微環(huán)境密切相關(guān),不斷相互作用。**可以通過釋放細(xì)胞外信號,促進**血管生成和誘導(dǎo)外周免疫耐受來影響微環(huán)境,而微環(huán)境中的免疫細(xì)胞可以影響*細(xì)胞的生長和進化。免疫細(xì)胞泛指所有參與免疫反應(yīng)的細(xì)胞,也特指能識別抗原,產(chǎn)生特異性免疫應(yīng)答的淋巴細(xì)胞等。主要包括T淋巴細(xì)胞、B淋巴細(xì)胞、單核細(xì)胞、巨噬細(xì)胞、粒細(xì)胞、肥大細(xì)胞、輔佐細(xì)胞,以及它們的前體細(xì)胞等,是免疫系統(tǒng)的功能單元。**微環(huán)境中免疫細(xì)胞之間相互作用形成免疫網(wǎng)絡(luò),網(wǎng)絡(luò)設(shè)立可以清晰了解**微環(huán)境中免疫細(xì)胞之間的影響機制。應(yīng)用場景用網(wǎng)絡(luò)圖同時展示相關(guān)關(guān)系、pvalue、聚類/分類結(jié)果、跟預(yù)后的關(guān)系。-例如例文中各細(xì)胞之間的相關(guān)關(guān)系、跟預(yù)后的關(guān)系?;驹恚好庖呦到y(tǒng)遍布全身,涉及多種細(xì)胞、***、蛋白質(zhì)和組織。它可以區(qū)分我們的組織和外來組織自我和非自我。死亡和有缺陷的細(xì)胞也會被免疫系統(tǒng)識別和***。如果免疫系統(tǒng)遇到病原體就會產(chǎn)生免疫反應(yīng)。免疫細(xì)胞泛指所有參與免疫反應(yīng)的細(xì)胞,也特指能識別抗原,產(chǎn)生特異性免疫應(yīng)答的淋巴細(xì)胞等。 結(jié)合WGCNA的ceRNA分析。四川成果發(fā)表指導(dǎo)數(shù)據(jù)科學(xué)方案
蛋白組代謝組個性化分析。四川成果發(fā)表指導(dǎo)數(shù)據(jù)科學(xué)方案
STEM基因表達(dá)趨勢分析數(shù)據(jù)要求表達(dá)譜芯片或測序數(shù)據(jù)(已經(jīng)過預(yù)處理)下游分析得到***富集的時間表達(dá)模式之后的分析有:1.時間表達(dá)模式中基因的功能富集2.時間表達(dá)模式中基因表達(dá)與性狀之間的相關(guān)性挖掘模塊的關(guān)鍵信息:1.找到時間表達(dá)模式中的**基因2.利用關(guān)系預(yù)測該時間表達(dá)模式功能文獻1:DynamicEBF1occupancydirectssequentialepigeneticandtranscriptionaleventsinB-cellprogramming(于2018年1月發(fā)表在GenesDev.,影響因子)EBF1動態(tài)占據(jù)在B細(xì)胞中對序列表觀遺傳和轉(zhuǎn)錄過程的影響該文獻采用基因表達(dá)趨勢分析,探尋了EBF1誘導(dǎo)前后25kb轉(zhuǎn)錄起始位點內(nèi)基因轉(zhuǎn)錄水平的差異,來尋找EBF1對特定功能基因的影響以及造成影響的時間節(jié)點。文獻2:ComprehensivetranscriptionalprofilingofNaCl-stressedArabidopsisrootsrevealsnovelclassesofresponsivegenes(于2016年10月發(fā)表在BMCPlantBiol.,影響因子)該文獻采用基因表達(dá)趨勢分析,研究了高濃度鹽水作用不同時間下擬南芥根的基因表達(dá)差異,來探尋在遇到高濃度鹽水時擬南芥在基因?qū)用嫔系膽?yīng)對方式。 四川成果發(fā)表指導(dǎo)數(shù)據(jù)科學(xué)方案