基于數(shù)據(jù)的故障檢測與診斷方法能夠?qū)A康墓I(yè)數(shù)據(jù)進行統(tǒng)計分析和特征提取,將系統(tǒng)的狀態(tài)分為正常運行狀態(tài)和故障狀態(tài),可視為模式識別任務(wù)。故障檢測是判斷系統(tǒng)是否處于預(yù)期的正常運行狀態(tài),判斷系統(tǒng)是否發(fā)生異常故障,相當(dāng)于一個二分類任務(wù)。故障診斷是在確定發(fā)生故障的時候判斷系統(tǒng)處于哪一種故障狀態(tài),相當(dāng)于一個多分類任務(wù)。因此,故障檢測和診斷技術(shù)的研究類似于模式識別,分為4個的步驟:數(shù)據(jù)獲取、特征提取、特征選擇和特征分類。1)數(shù)據(jù)獲取步驟是從過程系統(tǒng)收集可能影響過程狀態(tài)的信號,包括溫度、流量等過程變量;2)特征提取步驟是將采集的原始信號映射為有辨識度的狀態(tài)信息;3)特征選擇步驟是將與狀態(tài)變化相關(guān)的變量提取出來;4)特征分類步驟是通過算法將前幾步中選擇的特征進行故障檢測與診斷。在大數(shù)據(jù)這一背景下,傳統(tǒng)的基于數(shù)據(jù)的故障檢測與診斷方法被廣泛應(yīng)用,但是,這些方法有一些共同的缺點:特征提取需要大量的知識和信號處理技術(shù),并且對于不同的任務(wù),沒有統(tǒng)一的程序來完成。此外,常規(guī)的基于機器學(xué)習(xí)的方法結(jié)構(gòu)較淺,在提取信號的高維非線性關(guān)系方面能力有限。時間域、頻率域和角度域的NVH分析方法,可以對汽車動力總成的各種故障進行實時識別、監(jiān)測和診斷。南京專業(yè)監(jiān)測臺
電機馬達監(jiān)控系統(tǒng)適用于石油、化工、電力、煤炭、冶金、造紙等行業(yè),可以實時對低壓電動機的運行狀態(tài)進行監(jiān)測,對電機各類故障進行監(jiān)測并存儲故障信息,可以生成各類實時曲線(電壓曲線、電流曲線等),為電機節(jié)能提供依據(jù),并可實現(xiàn)電機節(jié)能管理。系統(tǒng)特點:1、實時監(jiān)測電機回路石化、電力、水泥等電機用量大戶,需要對電機進行實時監(jiān)測,監(jiān)測內(nèi)容包括電機的電流、電壓、電能、頻率、電機狀態(tài)(起動、停止、報警、故障)等。在要求較高的場所還要對工藝參數(shù)進行監(jiān)測,例如溫度、壓力等。本系統(tǒng)不僅可以監(jiān)測電機電壓、電流還能做能耗統(tǒng)計,工藝參數(shù)監(jiān)測,可以大幅提高企業(yè)自動化程度。2、集中監(jiān)控,利于節(jié)能馬達監(jiān)控系統(tǒng)對用電大戶電機進行實時能耗監(jiān)測,監(jiān)測到的數(shù)據(jù)可以作為節(jié)能依據(jù),并可通過系統(tǒng)進行節(jié)能控制,利于電機節(jié)能應(yīng)用。3、提高自動化水平.電機監(jiān)控系統(tǒng)是應(yīng)用電力自動化技術(shù)、計算機技術(shù)和信息傳輸技術(shù),集保護、監(jiān)測、控制、通信等功能于一體的綜合系統(tǒng),寧波性能監(jiān)測方案基于人工智能算法的新型的電機故障預(yù)測系統(tǒng),適用范圍廣,能在更多的工業(yè)場合應(yīng)用。
在預(yù)防性維護的應(yīng)用中,振動是大型旋轉(zhuǎn)等設(shè)備即將發(fā)生故障的重要指標(biāo),一是在大型旋轉(zhuǎn)機械設(shè)備的所有故障中,振動問題出現(xiàn)的概率比較高;另一方面,振動信號包含了豐富的機械及運行的狀態(tài)信息;第三,振動信號易于拾取,便于在不影響機械運行的情況下實行在線監(jiān)測和診斷。旋轉(zhuǎn)類設(shè)備的預(yù)防性維護需要重點監(jiān)控振動量的變化。其預(yù)測性診斷技術(shù)對于制造業(yè)、風(fēng)電等的行業(yè)的運維具有非常重大的意義。通過設(shè)備振動等狀態(tài)的預(yù)測性維護,可以及時發(fā)現(xiàn)并解決系統(tǒng)及零部件存在問題。但是對于一些不是因為設(shè)備問題而存在的固有振動,振動強度不必要增加會對部件產(chǎn)生有害的力,危及設(shè)備的使用壽命和質(zhì)量。在這種情況下,則需要采用振動隔離技術(shù)來解決和干預(yù),有效抑制振動和噪聲的危害,避免設(shè)備故障和流程關(guān)閉。
故障預(yù)測與健康管理是以工業(yè)監(jiān)測數(shù)據(jù)為基礎(chǔ),通過數(shù)學(xué)優(yōu)化、統(tǒng)計概率、信號處理、機器學(xué)習(xí)和統(tǒng)計學(xué)習(xí)等技術(shù)搭建模型算法,實現(xiàn)產(chǎn)品和裝備的狀態(tài)監(jiān)測、故障診斷及壽命預(yù)測,為產(chǎn)品和裝備的正常運行保駕護航,從而提高其安全性和可靠性。故障預(yù)測與健康管理是以工業(yè)監(jiān)測數(shù)據(jù)為基礎(chǔ),通過高等數(shù)學(xué)、數(shù)學(xué)優(yōu)化、統(tǒng)計概率、信號處理、機器學(xué)習(xí)和統(tǒng)計學(xué)習(xí)等技術(shù)搭建模型算法,實現(xiàn)產(chǎn)品和裝備的狀態(tài)監(jiān)測、故障診斷及壽命預(yù)測,為產(chǎn)品和裝備的正常運行保駕護航,從而提高其安全性和可靠性。近年來我們提出的標(biāo)準(zhǔn)化平方包絡(luò)和數(shù)學(xué)框架以及準(zhǔn)算數(shù)均值比數(shù)學(xué)框架指引了稀疏測度構(gòu)造的新方向,同時發(fā)現(xiàn)了大量與基尼指數(shù)、峭度、香農(nóng)熵等具有等價性能的稀疏測度。基于標(biāo)準(zhǔn)化平方包絡(luò)和數(shù)學(xué)框架以及凸優(yōu)化技術(shù),提出了在線更新模型權(quán)重可解釋的機器學(xué)習(xí)算法,可以利用模型權(quán)重來實時確認(rèn)故障特征頻率,解決了狀態(tài)監(jiān)測與故障診斷領(lǐng)域傳統(tǒng)機器學(xué)習(xí)只能輸出狀態(tài),而無法提供故障特征來確認(rèn)輸出狀態(tài)的難題。設(shè)備狀態(tài)監(jiān)測是通過測定各類參數(shù),并進行分析處理,根據(jù)分析處理結(jié)果判定設(shè)備狀態(tài)。
電機狀態(tài)監(jiān)測故障診斷技術(shù)是一種了解和掌握電機在使用過程中的狀態(tài),確定其整體或局部正?;虍惓#缙诎l(fā)現(xiàn)故障及其原因,并能預(yù)報故障發(fā)展趨勢的技術(shù),電機狀態(tài)監(jiān)測與故障診斷技術(shù)包括識別電機狀態(tài)監(jiān)測和預(yù)測發(fā)展趨勢兩方面。設(shè)備狀態(tài)是指設(shè)備運行的工況,由設(shè)備運行過程中的各種性能參數(shù)以及設(shè)備運行過程中產(chǎn)生的二次效應(yīng)參數(shù)和產(chǎn)品質(zhì)量指標(biāo)參數(shù)來描述。設(shè)備狀態(tài)的類型包括:正常、異常和故障三種。設(shè)備狀態(tài)監(jiān)測是通過測定以上參數(shù),并進行分析處理,根據(jù)分析處理結(jié)果判定設(shè)備狀態(tài)。對設(shè)備進行定期或連續(xù)監(jiān)測,包括采用各種測試、分析判別方法,結(jié)合設(shè)備的歷史狀況和運行條件,弄清設(shè)備的客觀狀態(tài),獲取設(shè)備性能發(fā)展的趨勢規(guī)律,為設(shè)備的性能評價、合理使用、安全運行、故障診斷及設(shè)備自動控制打下基礎(chǔ)。故障診斷可以根據(jù)狀態(tài)監(jiān)測系統(tǒng)提供信息來查明失調(diào)的原因或性質(zhì),判斷劣化發(fā)生部位,預(yù)測狀態(tài)發(fā)展趨勢。常州性能監(jiān)測設(shè)備
盈蓓德科技順應(yīng)行業(yè)發(fā)展趨勢,搭建一套基于旋轉(zhuǎn)類設(shè)備溫度,振動狀態(tài)監(jiān)測、故障判斷的預(yù)測性維護系統(tǒng)。南京專業(yè)監(jiān)測臺
傳統(tǒng)方法通常無法自適應(yīng)提取特征, 同時需要一定的離線數(shù)據(jù)訓(xùn)練得到檢測模型, 但目標(biāo)對象在線場景下采集到的數(shù)據(jù)有限, 且其數(shù)據(jù)分布與訓(xùn)練數(shù)據(jù)的分布可能因隨機噪聲、變工況等原因而存在差異, 導(dǎo)致離線訓(xùn)練的模型并不完全適合于在線數(shù)據(jù), 容易降低檢測結(jié)果的準(zhǔn)確性; 其次, 上述方法通常采用基于異常點的檢測算法, 未充分考慮樣本前后的時序關(guān)系, 容易因數(shù)據(jù)微小波動而產(chǎn)生誤報警, 降低檢測結(jié)果的魯棒性; 再次, 為降低誤報警, 這類方法需要反復(fù)調(diào)整報警閾值. 此外, 基于系統(tǒng)分析的故障診斷方法利用狀態(tài)空間描述建立機理模型, 可獲得理想的診斷和檢測結(jié)果, 但這類方法通常需要提前知道系統(tǒng)運動方程等信息, 對于軸承運行來說, 這類信息通常不易獲知. 近年來, 深度神經(jīng)網(wǎng)絡(luò)已被成功應(yīng)用于早期故障特征的自動提取和識別, 可自適應(yīng)地提取信息豐富和判別能力強的深度特征, 因此具有較好的普適性. 但是, 這類方法一方面需要大量輔助數(shù)據(jù)進行模型訓(xùn)練, 而歷史采集的輔助數(shù)據(jù)與目標(biāo)對象數(shù)據(jù)可能存在較大不同, 直接訓(xùn)練并不能有效提升在線檢測的特征表示效果; 另一方面, 在訓(xùn)練過程中未能針對早期故障引發(fā)的狀態(tài)變化而有目的地強化相應(yīng)特征表示. 因此, 深度學(xué)習(xí)方法在早期故障在線監(jiān)測中的應(yīng)用仍存在較大的提升空間.南京專業(yè)監(jiān)測臺