傳統(tǒng)方法通常無(wú)法自適應(yīng)提取特征, 同時(shí)需要一定的離線數(shù)據(jù)訓(xùn)練得到檢測(cè)模型, 但目標(biāo)對(duì)象在線場(chǎng)景下采集到的數(shù)據(jù)有限, 且其數(shù)據(jù)分布與訓(xùn)練數(shù)據(jù)的分布可能因隨機(jī)噪聲、變工況等原因而存在差異, 導(dǎo)致離線訓(xùn)練的模型并不完全適合于在線數(shù)據(jù), 容易降低檢測(cè)結(jié)果的準(zhǔn)確性; 其次, 上述方法通常采用基于異常點(diǎn)的檢測(cè)算法, 未充分考慮樣本前后的時(shí)序關(guān)系, 容易因數(shù)據(jù)微小波動(dòng)而產(chǎn)生誤報(bào)警, 降低檢測(cè)結(jié)果的魯棒性; 再次, 為降低誤報(bào)警, 這類方法需要反復(fù)調(diào)整報(bào)警閾值. 此外, 基于系統(tǒng)分析的故障診斷方法利用狀態(tài)空間描述建立機(jī)理模型, 可獲得理想的診斷和檢測(cè)結(jié)果, 但這類方法通常需要提前知道系統(tǒng)運(yùn)動(dòng)方程等信息, 對(duì)于軸承運(yùn)行來(lái)說(shuō), 這類信息通常不易獲知.
近年來(lái), 深度神經(jīng)網(wǎng)絡(luò)已被成功應(yīng)用于早期故障特征的自動(dòng)提取和識(shí)別, 可自適應(yīng)地提取信息豐富和判別能力強(qiáng)的深度特征, 因此具有較好的普適性. 但是, 這類方法一方面需要大量的輔助數(shù)據(jù)進(jìn)行模型訓(xùn)練, 而歷史采集的輔助數(shù)據(jù)與目標(biāo)對(duì)象數(shù)據(jù)可能存在較大不同, 直接訓(xùn)練并不能有效提升在線檢測(cè)的特征表示效果; 另一方面, 在訓(xùn)練過(guò)程中未能針對(duì)早期故障引發(fā)的狀態(tài)變化而有目的地強(qiáng)化相應(yīng)特征表示. 因此, 深度學(xué)習(xí)方法在早期故障在線監(jiān)測(cè)中的應(yīng)用仍存在較大的提升空間. 盈蓓德科技開發(fā)的新型電機(jī)故障監(jiān)測(cè)系統(tǒng)借用物聯(lián)網(wǎng)、人工智能、邊緣計(jì)算等技術(shù),提前預(yù)判設(shè)備故障。監(jiān)測(cè)臺(tái)
故障預(yù)測(cè)與健康管理是以工業(yè)監(jiān)測(cè)數(shù)據(jù)為基礎(chǔ),通過(guò)高等數(shù)學(xué)、數(shù)學(xué)優(yōu)化、統(tǒng)計(jì)概率、信號(hào)處理、機(jī)器學(xué)習(xí)和統(tǒng)計(jì)學(xué)習(xí)等技術(shù)搭建模型算法,實(shí)現(xiàn)產(chǎn)品和裝備的狀態(tài)監(jiān)測(cè)、故障診斷及壽命預(yù)測(cè),為產(chǎn)品和裝備的正常運(yùn)行保駕護(hù)航,從而提高其安全性、可靠性。故障預(yù)測(cè)與健康管理是以工業(yè)監(jiān)測(cè)數(shù)據(jù)為基礎(chǔ),通過(guò)高等數(shù)學(xué)、數(shù)學(xué)優(yōu)化、統(tǒng)計(jì)概率、信號(hào)處理、機(jī)器學(xué)習(xí)和統(tǒng)計(jì)學(xué)習(xí)等技術(shù)搭建模型算法,實(shí)現(xiàn)產(chǎn)品和裝備的狀態(tài)監(jiān)測(cè)、故障診斷及壽命預(yù)測(cè),為產(chǎn)品和裝備的正常運(yùn)行保駕護(hù)航,從而提高其安全性和可靠性。近年來(lái)我們提出的標(biāo)準(zhǔn)化平方包絡(luò)和數(shù)學(xué)框架以及準(zhǔn)算數(shù)均值比數(shù)學(xué)框架指引了稀疏測(cè)度構(gòu)造的新方向,同時(shí)發(fā)現(xiàn)了大量與基尼指數(shù)、峭度、香農(nóng)熵等具有等價(jià)性能的稀疏測(cè)度?;跇?biāo)準(zhǔn)化平方包絡(luò)和數(shù)學(xué)框架以及凸優(yōu)化技術(shù),提出了在線更新模型權(quán)重可解釋的機(jī)器學(xué)習(xí)算法,可以利用模型權(quán)重來(lái)實(shí)時(shí)確認(rèn)故障特征頻率,解決了狀態(tài)監(jiān)測(cè)與故障診斷領(lǐng)域傳統(tǒng)機(jī)器學(xué)習(xí)只能輸出狀態(tài),而無(wú)法提供故障特征來(lái)確認(rèn)輸出狀態(tài)的難題。南通動(dòng)力設(shè)備監(jiān)測(cè)介紹電動(dòng)機(jī)在運(yùn)轉(zhuǎn)中常產(chǎn)生各種故障,為保證電動(dòng)機(jī)運(yùn)行安全,對(duì)電動(dòng)機(jī)運(yùn)行狀態(tài)進(jìn)行在線監(jiān)測(cè)尤為重要。
基于數(shù)據(jù)的故障檢測(cè)與診斷方法能夠?qū)A康墓I(yè)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析和特征提取,將系統(tǒng)的狀態(tài)分為正常運(yùn)行狀態(tài)和故障狀態(tài),可視為模式識(shí)別任務(wù)。故障檢測(cè)是判斷系統(tǒng)是否處于預(yù)期的正常運(yùn)行狀態(tài),判斷系統(tǒng)是否發(fā)生異常故障,相當(dāng)于一個(gè)二分類任務(wù)。故障診斷是在確定發(fā)生故障的時(shí)候判斷系統(tǒng)處于哪一種故障狀態(tài),相當(dāng)于一個(gè)多分類任務(wù)。因此,故障檢測(cè)和診斷技術(shù)的研究類似于模式識(shí)別,分為4個(gè)的步驟:數(shù)據(jù)獲取、特征提取、特征選擇和特征分類。1)數(shù)據(jù)獲取步驟是從過(guò)程系統(tǒng)收集可能影響過(guò)程狀態(tài)的信號(hào),包括溫度、流量等過(guò)程變量;2)特征提取步驟是將采集的原始信號(hào)映射為有辨識(shí)度的狀態(tài)信息;3)特征選擇步驟是將與狀態(tài)變化相關(guān)的變量提取出來(lái);4)特征分類步驟是通過(guò)算法將前幾步中選擇的特征進(jìn)行故障檢測(cè)與診斷。在大數(shù)據(jù)這一背景下,傳統(tǒng)的基于數(shù)據(jù)的故障檢測(cè)與診斷方法被廣泛應(yīng)用,但是,這些方法有一些共同的缺點(diǎn):特征提取需要大量的知識(shí)和信號(hào)處理技術(shù),并且對(duì)于不同的任務(wù),沒(méi)有統(tǒng)一的程序來(lái)完成。此外,常規(guī)的基于機(jī)器學(xué)習(xí)的方法結(jié)構(gòu)較淺,在提取信號(hào)的高維非線性關(guān)系方面能力有限。
基于交流電機(jī)的特征量:通過(guò)故障機(jī)理分析可知,交流電機(jī)運(yùn)行過(guò)程中,其故障與否必然表現(xiàn)為一些特征參量的變化,根據(jù)診斷需要,選擇有代表性的特征參量為該設(shè)備在線監(jiān)測(cè)的被測(cè)信號(hào),準(zhǔn)確地提取這些故障特征量,這是故障診斷的關(guān)鍵。故障特征量,特別是反映早期故障征兆的信號(hào)往往比較弱,而相應(yīng)的背景噪聲比較弱,常規(guī)的監(jiān)測(cè)方法,因受傳感器的準(zhǔn)確性、微處理器的速度、A/D轉(zhuǎn)換的分辨率與轉(zhuǎn)換速度等硬件條件限制,以及一般的數(shù)據(jù)處理方式的不足,很難滿足提取這些特征量的要求,需要采用一些特殊的電工測(cè)量手段與信號(hào)處理方法。例如小波變換原理的應(yīng)用。電機(jī)故障的現(xiàn)代分析方法:基于信號(hào)變換的診斷方法電機(jī)設(shè)備的許多故障信息是以調(diào)制的形式存在于所監(jiān)測(cè)的電氣信號(hào)及振動(dòng)信號(hào)之中,如果借助于某種變換對(duì)這些信號(hào)進(jìn)行解調(diào)處理,就能方便地獲得故障特征信息,以確定電機(jī)設(shè)備所發(fā)生的故障類型。電機(jī)智能監(jiān)測(cè)和運(yùn)維,其預(yù)測(cè)效果和工程造價(jià)還未達(dá)到市場(chǎng)接受程度。
針對(duì)刀具磨損狀態(tài)在實(shí)際生產(chǎn)加工過(guò)程中難以在線監(jiān)測(cè)這一問(wèn)題,提出一種通過(guò)通信技術(shù)獲取機(jī)床內(nèi)部數(shù)據(jù),對(duì)當(dāng)前的刀具磨損狀態(tài)進(jìn)行識(shí)別的方法。通過(guò)采集機(jī)床內(nèi)部實(shí)時(shí)數(shù)據(jù)并將其與實(shí)際加工情景緊密結(jié)合,能直接反映當(dāng)前的加工狀態(tài)。將卷積神經(jīng)網(wǎng)絡(luò)用于構(gòu)建刀具磨損狀態(tài)識(shí)別模型,直接將采集到的數(shù)據(jù)作為輸入,得到了和傳統(tǒng)方法精度近似的預(yù)測(cè)模型,模型在訓(xùn)練集和在線驗(yàn)證試驗(yàn)中的表現(xiàn)都符合預(yù)期。刀具磨損狀態(tài)識(shí)別的方法在投入使用時(shí)還有一些問(wèn)題有待解決:①現(xiàn)有數(shù)據(jù)是在相同的加工條件下測(cè)得的,而實(shí)際加工過(guò)程中,加工參數(shù)以及加工情景是不斷變化的,因此需要在下一步的研究中,進(jìn)行變參數(shù)試驗(yàn),考慮加工參數(shù)對(duì)于刀具磨損的影響,并針對(duì)常用的一些加工場(chǎng)景,建立不同的模型庫(kù)。變換加工場(chǎng)景,通過(guò)獲取當(dāng)前場(chǎng)景,及時(shí)匹配相應(yīng)的預(yù)測(cè)模型即可。②本研究中的模型是一個(gè)固定的模型。今后需要根據(jù)實(shí)時(shí)的信號(hào)以及已知的磨損狀態(tài),對(duì)模型進(jìn)行實(shí)時(shí)更新,從而在實(shí)時(shí)監(jiān)測(cè)過(guò)程中實(shí)現(xiàn)自學(xué)習(xí),不斷提升模型的精度和預(yù)測(cè)效果。盈蓓德科技搭建了一套基于人人工智能算法的旋轉(zhuǎn)類設(shè)備溫度,振動(dòng)狀態(tài)監(jiān)測(cè)、故障判斷和預(yù)測(cè)性維護(hù)系統(tǒng)。紹興EOL監(jiān)測(cè)公司
電機(jī)監(jiān)測(cè)系統(tǒng)可以識(shí)別處于初期階段的機(jī)械和液壓故障,從而制定更為合理的輔助維護(hù)計(jì)劃。監(jiān)測(cè)臺(tái)
目前設(shè)備狀態(tài)監(jiān)測(cè)及故障預(yù)警若干關(guān)鍵技術(shù)可歸納如下(1)揭示設(shè)備運(yùn)行狀態(tài)機(jī)械動(dòng)態(tài)特性劣化演變規(guī)律。設(shè)備由非故障運(yùn)行狀態(tài)劣化為故障運(yùn)行狀態(tài),其機(jī)械動(dòng)態(tài)特性通常有一個(gè)發(fā)展演變過(guò)程(2)提取設(shè)備運(yùn)行狀態(tài)發(fā)展趨勢(shì)特征。在役設(shè)備往往具有復(fù)雜運(yùn)行狀態(tài),在長(zhǎng)歷程運(yùn)行中工況和負(fù)載等非故障因素會(huì)造成信號(hào)能量變化,故障趨勢(shì)信息往往被非故障變化信息淹沒(méi),需較大程度上消除非故障變化造成的冗余信息,進(jìn)而構(gòu)建預(yù)測(cè)模型。動(dòng)力裝備全壽命周期監(jiān)測(cè)診斷方面:實(shí)現(xiàn)了支持物聯(lián)網(wǎng)的智能信息采集與管理、全生命周期動(dòng)態(tài)自適應(yīng)監(jiān)測(cè)、早期非線性故障特征提取。優(yōu)化重構(gòu)出綜合體現(xiàn)裝備運(yùn)行工況及表現(xiàn)的新參數(shù),提高異常狀態(tài)辨識(shí)的適應(yīng)性與可靠性,基于運(yùn)行過(guò)程信息反映裝備劣化趨勢(shì)與故障發(fā)展規(guī)律,來(lái)提高故障早期辨識(shí)能力。基于物聯(lián)網(wǎng)和網(wǎng)絡(luò)化監(jiān)測(cè)診斷將產(chǎn)品監(jiān)測(cè)診斷與運(yùn)行服務(wù)支持有機(jī)集成一體,在應(yīng)用中實(shí)現(xiàn)動(dòng)力裝備常見故障診斷準(zhǔn)確率達(dá)80%以上??蓱?yīng)用于風(fēng)力大電機(jī)、空壓機(jī)、氮壓機(jī)等大型動(dòng)力裝備的集群化診斷領(lǐng)域。提供了基于物聯(lián)網(wǎng)的動(dòng)力裝備全生命周期監(jiān)測(cè)與服務(wù)支持創(chuàng)新模式,提供了其生命周期的遠(yuǎn)程監(jiān)測(cè)診斷與維護(hù)等專業(yè)化服務(wù)。監(jiān)測(cè)臺(tái)