現(xiàn)代電力系統(tǒng)中發(fā)電機的單機容量越大型發(fā)電機在電力生產(chǎn)中處于主力位置,同時大型發(fā)電機造價昂貴,結構復雜,一旦遭受損壞,需要的檢修期長,因此要求有極高的運行可靠性。就我國今后很長一段時間內(nèi)的缺電、用電緊張的狀況而言,發(fā)電機的年運行小時數(shù)目和滿負荷率都較以往高出很多,備用容量很少的情況下,其運行可靠性顯得尤為重要和突出。因此對大型機組進行在線監(jiān)測與診斷,做到早期預警以防止事故的發(fā)生或擴大具有重要的現(xiàn)實意義。通常對發(fā)電機的“監(jiān)測”與“診斷”在內(nèi)容上并無明確的劃分界限,可以說監(jiān)測的數(shù)據(jù)和結果即為診斷的依據(jù)。監(jiān)測利用各種傳感器在電機運行時對電機的狀態(tài)提取相關數(shù)據(jù)。故障診斷使用計算機及其相應智能軟件,根據(jù)傳感器提供的信息,對故障進行分類、定位,確定故障的嚴重程度并提出處理意見。因此狀態(tài)監(jiān)測和故障診斷是一項工作的兩個部分,前者是后者的基礎,后者是前者的分析與綜合。電機狀態(tài)監(jiān)測技術可幫助運行維護人員擺脫被動檢修和不太理想的定期檢修的困境,按照設備內(nèi)部實際的運行狀況,合理的安排檢修工作,實現(xiàn)所謂“預知”維修。這樣既可避免由于設備突然損壞,停止運行帶來的損失,又可充分發(fā)揮設備的作用。盈蓓德科技通過自主開發(fā)的軟件和算法,對數(shù)控機床的刀具質量進行監(jiān)測,提前預判刀具運行情況。紹興混合動力系統(tǒng)監(jiān)測設備
電機等振動設備在運行中,伴隨著一些安全問題,振動數(shù)據(jù)會發(fā)生變化,如果不及時發(fā)現(xiàn),容易導致起火或,造成大量的財產(chǎn)損失,而這些問題具有突發(fā)性和不準確性,難以預知,應對這種情況,需要一種手段去解決。無線振動傳感器直接讀取原始加速度數(shù)據(jù),準確可靠,避免后期計算出現(xiàn)較大誤差。本傳感器采用無線通訊方式,低功耗設計,一次性鋰亞電池供電,具有容量大、耐高溫、不宜爆等特點,工作原理:將傳感器分布式安裝在各類電機、風機、振動平臺、回轉窯、傳送設備等需要振動監(jiān)測的設備上實時采集振動數(shù)據(jù),然后通過無線方式將數(shù)據(jù)發(fā)送給采集端,采集端將數(shù)據(jù)解析、顯示或傳輸。系統(tǒng)能實時在線監(jiān)測出設備異常,發(fā)出預警,避免事故發(fā)生。產(chǎn)品特點(1)實時性:系統(tǒng)實時在線監(jiān)測電機等振動參數(shù),避免了由于電機突然缺相、線圈故障,堵轉、固定螺栓松動、負載過高和人為錯誤操作等發(fā)生的事故。(2)便捷性:系統(tǒng)采用無線傳輸方式,傳感器安裝,解決了以往因為空間狹小、不能布線、安裝成本高等問題。(3)可靠性:系統(tǒng)采用先進成熟的傳感技術和無線傳輸技術,抗干擾力強,傳輸距離遠,讀數(shù)準確,可靠性高。上海研發(fā)監(jiān)測數(shù)據(jù)電機監(jiān)測和故障預判系統(tǒng)是實現(xiàn)工業(yè)設備數(shù)智化管理和預測性維護的關鍵。
目前設備狀態(tài)監(jiān)測及故障預警若干關鍵技術可歸納如下(1)揭示設備運行狀態(tài)機械動態(tài)特性劣化演變規(guī)律。設備由非故障運行狀態(tài)劣化為故障運行狀態(tài),其機械動態(tài)特性通常有一個發(fā)展演變過程(2)提取設備運行狀態(tài)發(fā)展趨勢特征。在役設備往往具有復雜運行狀態(tài),在長歷程運行中工況和負載等非故障因素會造成信號能量變化,故障趨勢信息往往被非故障變化信息淹沒,需較大程度上消除非故障變化造成的冗余信息,進而構建預測模型。動力裝備全壽命周期監(jiān)測診斷方面:實現(xiàn)了支持物聯(lián)網(wǎng)的智能信息采集與管理、全生命周期動態(tài)自適應監(jiān)測、早期非線性故障特征提取。優(yōu)化重構出綜合體現(xiàn)裝備運行工況及表現(xiàn)的新參數(shù),提高異常狀態(tài)辨識的適應性與可靠性,基于運行過程信息反映裝備劣化趨勢與故障發(fā)展規(guī)律,來提高故障早期辨識能力?;谖锫?lián)網(wǎng)和網(wǎng)絡化監(jiān)測診斷將產(chǎn)品監(jiān)測診斷與運行服務支持有機集成一體,在應用中實現(xiàn)動力裝備常見故障診斷準確率達80%以上??蓱糜陲L力大電機、空壓機、氮壓機等大型動力裝備的集群化診斷領域。提供了基于物聯(lián)網(wǎng)的動力裝備全生命周期監(jiān)測與服務支持創(chuàng)新模式,提供了其生命周期的遠程監(jiān)測診斷與維護等專業(yè)化服務。
在預防性維護的應用中,振動是大型旋轉等設備即將發(fā)生故障的重要指標,一是在大型旋轉機械設備的所有故障中,振動問題出現(xiàn)的概率比較高;第二,振動信號包含了豐富的機械及運行的狀態(tài)信息;第三,振動信號易于拾取,便于在不影響機械運行的情況下實行在線監(jiān)測和診斷。旋轉類設備的預防性維護需要重點監(jiān)控振動量的變化。其預測性診斷技術對于制造業(yè)、風電等的行業(yè)的運維具有非常重大的意義。通過設備振動等狀態(tài)的預測性維護,可以及時發(fā)現(xiàn)并解決系統(tǒng)及零部件存在問題。但是對于一些不是因為設備問題而存在的固有振動,振動強度的不必要增加會對部件產(chǎn)生有害的力,危及設備的使用壽命和質量。在這種情況下,則需要采用振動隔離技術來解決和干預,有效抑制振動和噪聲的危害,避免設備故障和流程關閉。電機的監(jiān)測和故障預判系統(tǒng)助力實現(xiàn)工業(yè)設備數(shù)智化管理和預測性維護。
基于數(shù)據(jù)的故障檢測與診斷方法能夠對海量的工業(yè)數(shù)據(jù)進行統(tǒng)計分析和特征提取,將系統(tǒng)的狀態(tài)分為正常運行狀態(tài)和故障狀態(tài),可視為模式識別任務。故障檢測是判斷系統(tǒng)是否處于預期的正常運行狀態(tài),判斷系統(tǒng)是否發(fā)生異常故障,相當于一個二分類任務。故障診斷是在確定發(fā)生故障的時候判斷系統(tǒng)處于哪一種故障狀態(tài),相當于一個多分類任務。因此,故障檢測和診斷技術的研究類似于模式識別,分為4個的步驟:數(shù)據(jù)獲取、特征提取、特征選擇和特征分類。1)數(shù)據(jù)獲取步驟是從過程系統(tǒng)收集可能影響過程狀態(tài)的信號,包括溫度、流量等過程變量;2)特征提取步驟是將采集的原始信號映射為有辨識度的狀態(tài)信息;3)特征選擇步驟是將與狀態(tài)變化相關的變量提取出來;4)特征分類步驟是通過算法將前幾步中選擇的特征進行故障檢測與診斷。在大數(shù)據(jù)這一背景下,傳統(tǒng)的基于數(shù)據(jù)的故障檢測與診斷方法被廣泛應用,但是,這些方法有一些共同的缺點:特征提取需要大量的知識和信號處理技術,并且對于不同的任務,沒有統(tǒng)一的程序來完成。此外,常規(guī)的基于機器學習的方法結構較淺,在提取信號的高維非線性關系方面能力有限。盈蓓德科技可以搭建造價低廉,性能穩(wěn)定,安裝方便,使用簡單,維護工作量少的旋轉類設備振動監(jiān)測系統(tǒng)。常州NVH監(jiān)測價格
盈蓓德科技可以提供故障預判準確率高,更經(jīng)濟更可靠的旋轉設備健康狀態(tài)監(jiān)測方案。紹興混合動力系統(tǒng)監(jiān)測設備
現(xiàn)代化生產(chǎn)企業(yè)為了極大限度地提高生產(chǎn)水平和經(jīng)濟效益,不斷地向規(guī)?;透呒夹g技術含量發(fā)展,因此生產(chǎn)裝置趨向大型化、高速高效化、自動化和連續(xù)化,人們對設備的要求不僅是性能好,效率高,還要求在運行過程中少出故障,否則因故障停機帶來的損失是十分巨大的。國內(nèi)外化工、石化、電力、鋼鐵和航空等部門,從許多大型設備故障和事故中逐漸認識到開展設備故障診斷的重要性。管理好用好這些大型設備,使其安全、可靠地運行,成為設備管理中的突出任務。對于單機連續(xù)運行的生產(chǎn)設備,停機損失巨大的大型機組和重大設備,不宜解體檢查的高精度設備以及發(fā)生故障后會引起公害的設備。傳統(tǒng)的事后和定期維修帶來的過剩維修或失修,使維修費用在生產(chǎn)成本中所占比重很大。狀態(tài)監(jiān)測維修是在設備運行時,對它的各個主要部位產(chǎn)生的物理、化學信號進行狀態(tài)監(jiān)測,掌握設備的技術狀態(tài),對將要形成或已經(jīng)形成的故障進行分析診斷,判定設備的劣化程度和部位,在故障產(chǎn)生前制訂預知性維修計劃,確定設備維修的內(nèi)容和時間。因此狀態(tài)監(jiān)測維修既能經(jīng)常保持設備的完好狀態(tài),又能充分利用零部位的使用壽命,從而延長大修間隔,減少故障停機損失。紹興混合動力系統(tǒng)監(jiān)測設備