唐江教授和他的團隊提出了一種快速熱蒸發(fā)(RTE)的方法來獲得高質(zhì)量的CdSe薄膜,并設計了CdSe薄膜太陽能電池。這項題為Rapidthermalevaporationforcadmiumselenidethin-filmsolarcells的研究發(fā)表在2021年12月6日的FrontiersofOptoelectronics上。在這項研究中,RTE被用來沉積硒化鎘薄膜,這些薄膜表現(xiàn)出高的晶體質(zhì)量,具有大的晶粒尺寸和優(yōu)先的晶體方向。同時,720納米處的尖銳吸收邊緣表明CdSe薄膜的直接帶隙為1.72eV。強烈的光致發(fā)光,半滿寬度為23納米,顯示出CdSe薄膜的缺陷相對較少?;诟哔|(zhì)量的CdSe薄膜,我們引入了合適的電子傳輸層(ETL)和空穴傳輸層(HTL)來構(gòu)建CdSe太陽能電池。***,通過設計FTO/ZnO/CdS/CdSe/PEDOT/CuI的比較好配置,效率達到了1.88%。這項研究***開發(fā)了一種RTE方法來沉積CdSe薄膜,并對其光電性能進行了系統(tǒng)的描述。此外,它還展示了CdSe太陽能電池的設備設計和優(yōu)化的一般規(guī)則。它還指出了CdSe薄膜及其太陽能電池的優(yōu)點。未來,CdSe太陽能電池在硅基串聯(lián)應用中具有很大的潛力,這值得進一步研究。有何提高PEDOT的產(chǎn)量?固態(tài)電解質(zhì)PEDOT導電涂布液
該方法提供了一種新的方法,利用一個尺寸與病毒顆粒相當?shù)南到y(tǒng)-納米粒子探針來監(jiān)測大腦中的電活動。神經(jīng)元使用電信號來相互傳遞信息,使這些信號對思維、記憶和運動至關重要。雖然有許多既定的方法來跟蹤大腦的電活動,但大多數(shù)都需要通過手術或植入設備來穿透頭骨并直接與神經(jīng)元對接。研究人員將他們的新技術命名為NeurophotonicSolution-dispersibleWirelessActivityReportersforMassivelyMultiplexedMeasurements,或NeuroSWARM3。該方法涉及將工程化的電-等離子體納米粒子引入大腦,將電信號轉(zhuǎn)化為光信號,從而可以用身體外的光學探測器跟蹤大腦活動。這些納米粒子包括一個直徑為63納米的氧化硅**,上面有一層薄薄的電致變色的聚(3,4-亞乙二氧基噻吩)和一個5納米厚的金涂層。因為它們的涂層允許它們穿過血腦屏障,所以它們可以被注射到血液中或直接進入腦脊液。涂布液PEDOT固態(tài)電容PEDOT具有分子結(jié)構(gòu)簡單、能隙小、電導率高等特點。
由林雪平大學有機電子實驗室的西蒙娜-法比亞諾領導的一個研究小組創(chuàng)造了一種具有***導電性的有機材料,它不需要被摻雜。他們通過混合兩種具有不同性質(zhì)的聚合物實現(xiàn)了這一點。為了提高聚合物的導電性,并通過這種方式在有機太陽能電池、發(fā)光二極管和其他生物電子應用中獲得更高的效率,研究人員到目前為止一直在材料中摻入各種物質(zhì)。通常情況下,這是通過移除一個電子或用一個摻雜分子將其捐贈給半導體材料來實現(xiàn)的,這種策略增加了電荷的數(shù)量,從而提高了材料的導電性。"我們通常對有機聚合物進行摻雜,以提高其導電性和設備性能。這個過程在一段時間內(nèi)是穩(wěn)定的,但材料會變質(zhì),我們用作摻雜劑的物質(zhì)**終會浸出。林雪平大學有機電子實驗室內(nèi)的有機納米電子小組負責人西蒙娜-法比亞諾副教授說:"這是我們希望在生物電子應用中不惜一切代價避免的事情,在生物電子應用中,有機電子元件可以為可穿戴電子設備和身體內(nèi)的植入物帶來巨大的好處。該研究小組由來自五個國家的科學家組成,現(xiàn)在已經(jīng)成功地將這兩種聚合物結(jié)合起來,生產(chǎn)出一種不需要任何摻雜就能導電的導電墨水。這兩種材料的能級完全匹配,因此電荷可以自發(fā)地從一種聚合物轉(zhuǎn)移到另一種。該成果已發(fā)表在《自然材料》上。
周教授的團隊一直致力于溶液加工的有機太陽能電池的界面操作,并對有機太陽能電池的表面能量調(diào)節(jié)進行了一系列研究。研究人員首先通過在PEDOT:PSS中加入WOx納米顆粒實現(xiàn)了有機太陽能電池80%的高填充系數(shù)。然后他們探討了活性層的堆積方向、有機太陽能電池的性能和界面層的表面能之間的關系。界面修飾的策略被用來研究倒置設備中的電子傳輸層,并在包晶石太陽能電池中得到了利用。通過使用生物聚合物肝素鈉來修改表面能,使過氧化物太陽能電池的界面缺陷鈍化,改善了PCE和穩(wěn)定性。為什么我的PEDOT/PSS抗靜電涂布液,只有在PET和PE基材上抗靜電效果很好,其他材料例如玻璃就干了膜就掉了。
生物雜交技術旨在將生物結(jié)構(gòu)和過程與人工系統(tǒng)合并,形成先進的技術組件。生物混合方法的一個巨大優(yōu)勢是,它們利用了經(jīng)過數(shù)百萬年進化而優(yōu)化的自然過程,而仿生系統(tǒng)則是完全人工的。植物是太陽能和碳負極--將二氧化碳轉(zhuǎn)化為化學能,它們能感知和適應各種環(huán)境刺激,并能通過組織再生進行自我修復。同時,它們生產(chǎn)一些有用的材料,其中纖維素是地球上**豐富的生物聚合物。因此,植物提供了一個***的過程,可以被用于技術目的。例如,在植物納米仿生學方法中,智能納米材料能夠在植物中實現(xiàn)設備功能。納米粒子被引入到植物中,根據(jù)它們的大小和電荷,它們自發(fā)地在特定的植物組織中定位,甚至到達葉綠體等細胞器。當植物從土壤中吸收感興趣的分析物時,浸潤在植物葉片中的改性碳納米管產(chǎn)生了可讀的信號。納米顆粒也被用作植物組織內(nèi)化學發(fā)光反應物的載體,因此使植物發(fā)光。然而,作為分散劑的 PSS 是一種限制 PEDOT:PSS 薄膜導電性的絕緣材料。導電油PEDOT電容
我按照英文文獻做的PEDOT一維結(jié)構(gòu),結(jié)果測電鏡的時候是顆粒的,在做一維PEDOT的時候的影響是什么?固態(tài)電解質(zhì)PEDOT導電涂布液
在過去幾十年中,聚合物和基于聚合物的復合材料在柔性熱電領域的應用越來越受到關注。p型PEDOT:PSS 是**被關注的聚合物系統(tǒng)之一,因為它具有優(yōu)異的電性能。然而,PEDOT:PSS 的熱電性能受到幾個因素的限制,例如較小的塞貝克系數(shù)、以及容易受 PSS 影響的電導率。因此,通過各種方法可以優(yōu)化 PEDOT:PSS 的功率因數(shù)(power factor),例如,去除復合材料中多余的不導電的 PSS,增強PEDOT鏈的取向以增加其電導率,化學處理以調(diào)節(jié)PEDOT鏈的氧化程度,以及集成各種納米結(jié)構(gòu)來增強它的熱電性能。固態(tài)電解質(zhì)PEDOT導電涂布液
上海歐依有機光電材料有限公司是一家從事有機光電材料、環(huán)保、清潔能源領域的技術開發(fā)、技術咨詢、技術服務、技術轉(zhuǎn)讓,電子材料、電子元器件及產(chǎn)品、化工原料及產(chǎn)品(除危險化學品、監(jiān)控化學品、民用物品、易制毒化學品)、儀器儀表、管道配件、機械設備及配件、文化辦公用品、工藝品的銷售的公司,是一家集研發(fā)、設計、生產(chǎn)和銷售為一體的專業(yè)化公司。公司自創(chuàng)立以來,投身于PEDOT/PSS,透明導電油墨,是精細化學品的主力軍。歐依有機光電材料始終以本分踏實的精神和必勝的信念,影響并帶動團隊取得成功。歐依有機光電材料始終關注自身,在風云變化的時代,對自身的建設毫不懈怠,高度的專注與執(zhí)著使歐依有機光電材料在行業(yè)的從容而自信。