干涉法作為面掃描方式可以一次性對薄膜局域內(nèi)的厚度進(jìn)行解算 ,適用于對面型整體形貌特征要求較高的測量對象。干涉法算法在于相位信息的提取,借助多種復(fù)合算法通??梢赃_(dá)到納米級的測量準(zhǔn)確度。然而主動(dòng)干涉法對條紋穩(wěn)定性不佳,光學(xué)元件表面的不清潔、光照度不均勻、光源不穩(wěn)定、外界氣流震動(dòng)干擾等因素均可能影響干涉圖的完整性[39],使干涉圖樣中包含噪聲和部分區(qū)域的陰影,給后期處理帶來困難。除此之外,干涉法系統(tǒng)精度的來源——精密移動(dòng)及定位部件也增加了系統(tǒng)的成本,高精度的干涉儀往往較為昂貴。隨著技術(shù)的進(jìn)步和應(yīng)用領(lǐng)域的拓展,白光干涉膜厚儀的性能和功能將不斷提高和擴(kuò)展;防水膜厚儀
確定靶丸折射率及厚度的算法 ,由于干涉光譜信號(hào)與膜的光參量直接相關(guān),這里主要考慮光譜分析的方法根據(jù)測量膜的反射或透射光譜進(jìn)行分析計(jì)算,可獲得膜的厚度、折射率等參數(shù)。根據(jù)光譜信號(hào)分析計(jì)算膜折射率及厚度的方法主要有極值法和包絡(luò)法、全光譜擬合法。極值法測量膜厚度主要是根據(jù)薄膜反射或透射光譜曲線上的波峰的位置來計(jì)算,對于弱色散介質(zhì),折射率為恒定值,根據(jù)兩個(gè)或兩個(gè)以上的極大值點(diǎn)的位置,求得膜的光學(xué)厚度,若已知膜折射率即可求解膜的厚度;對于強(qiáng)色散介質(zhì),首先利用極值點(diǎn)求出膜厚度的初始值。薄膜厚度是一恒定不變值,可根據(jù)極大值點(diǎn)位置的光學(xué)厚度關(guān)系式獲得入射波長和折射率的對應(yīng)關(guān)系,再依據(jù)薄膜材質(zhì)的色散特性,引入合適的色散模型,常用的色散模型有cauchy模型、Selimeier模型、Lorenz模型等,利用折射率與入射波長的關(guān)系式,通過二乘法擬合得到色散模型的系數(shù),即可解得任意入射波長下的折射率。薄膜干涉膜厚儀供應(yīng)商白光干涉膜厚測量技術(shù)可以應(yīng)用于光學(xué)元件制造中的薄膜厚度控制。
薄膜作為重要元件 ,通常使用金屬、合金、化合物、聚合物等作為其主要基材,品類涵蓋光學(xué)膜、電隔膜、阻隔膜、保護(hù)膜、裝飾膜等多種功能性薄膜,廣泛應(yīng)用于現(xiàn)代光學(xué)、電子、醫(yī)療、能源、建材等技術(shù)領(lǐng)域。常用薄膜的厚度范圍從納米級到微米級不等。納米和亞微米級薄膜主要是基于干涉效應(yīng)調(diào)制的光學(xué)薄膜,包括各種增透增反膜、偏振膜、干涉濾光片和分光膜等。部分薄膜經(jīng)特殊工藝處理后還具有耐高溫、耐腐蝕、耐磨損等特性,對通訊、顯示、存儲(chǔ)等領(lǐng)域內(nèi)光學(xué)儀器的質(zhì)量起決定性作用[1-3],如平面顯示器使用的ITO鍍膜,太陽能電池表面的SiO2減反射膜等。微米級以上的薄膜以工農(nóng)業(yè)薄膜為主,多使用聚酯材料,具有易改性、可回收、適用范圍廣等特點(diǎn)。例如6微米厚度以下的電容器膜,20微米厚度以下的大部分包裝印刷用薄膜,25~38微米厚的建筑玻璃貼膜及汽車貼膜,以及厚度為25~65微米的防偽標(biāo)牌及拉線膠帶等。微米級薄膜利用其良好的延展、密封、絕緣特性,遍及食品包裝、表面保護(hù)、磁帶基材、感光儲(chǔ)能等應(yīng)用市場,加工速度快,市場占比高。
常用白光垂直掃描干涉系統(tǒng)的原理 :入射的白光光束通過半反半透鏡進(jìn)入到顯微干涉物鏡后,被分光鏡分成兩部分,一個(gè)部分入射到固定的參考鏡,一部分入射到樣品表面,當(dāng)參考鏡表面和樣品表面的反射光通過分光鏡后,再次匯聚發(fā)生干涉,干涉光通過透鏡后,利用電荷耦合器(CCD)可探測整個(gè)視場內(nèi)雙白光光束的干涉圖像。利用Z向精密位移臺(tái)帶動(dòng)干涉鏡頭或樣品臺(tái)Z向掃描,可獲得一系列的干涉圖像。根據(jù)干涉圖像序列中對應(yīng)點(diǎn)的光強(qiáng)隨光程差變化曲線,可得該點(diǎn)的Z向相對位移;然后,由CCD圖像中每個(gè)像素點(diǎn)光強(qiáng)最大值對應(yīng)的Z向位置獲得被測樣品表面的三維形貌。白光干涉膜厚測量技術(shù)可以在不同環(huán)境下進(jìn)行測量。
當(dāng).1-管在輸出短路時(shí)!負(fù)載電流與光生電流才保持線性關(guān)系"本系統(tǒng)采用的.1-管零偏壓’工作方式如圖"所示"1G3+S&#斬波自穩(wěn)零集成運(yùn)算放大器!不僅使.1-管工作在短路狀態(tài)!而且實(shí)現(xiàn)了*/轉(zhuǎn)換"*/轉(zhuǎn)換是為了實(shí)現(xiàn)阻抗匹配!反向偏置的.1-二極管具有恒流源的性質(zhì)!內(nèi)阻很大!在很高的負(fù)載電阻的情況下可以得到很大的電壓信號(hào)!但影響了高頻響應(yīng)!而且如果將反向偏置狀態(tài)下的.1-二極管直接接到實(shí)際的負(fù)載電阻上!會(huì)因阻抗的失配而削弱信號(hào)的幅度"因此需要把高阻抗的電流源變成低阻抗的電壓源!然后再與負(fù)載相連白光干涉膜厚儀需要進(jìn)行校準(zhǔn),并選擇合適的標(biāo)準(zhǔn)樣品。國內(nèi)膜厚儀價(jià)格走勢
精度高的白光干涉膜厚儀通常采用Michelson干涉儀的結(jié)構(gòu)。防水膜厚儀
利用包絡(luò)線法計(jì)算薄膜的光學(xué)常數(shù)和厚度 ,但目前看來包絡(luò)法還存在很多不足,包絡(luò)線法需要產(chǎn)生干涉波動(dòng),要求在測量波段內(nèi)存在多個(gè)干涉極值點(diǎn),且干涉極值點(diǎn)足夠多,精度才高。理想的包絡(luò)線是根據(jù)聯(lián)合透射曲線的切點(diǎn)建立的,在沒有正確方法建立包絡(luò)線時(shí),通常使用拋物線插值法建立,這樣造成的誤差較大。包絡(luò)法對測量對象要求高,如果薄膜較薄或厚度不足情況下,會(huì)造成干涉條紋減少,干涉波峰個(gè)數(shù)較少,要利用干涉極值點(diǎn)建立包絡(luò)線就越困難,且利用拋物線插值法擬合也很困難,從而降低該方法的準(zhǔn)確度。其次,薄膜吸收的強(qiáng)弱也會(huì)影響該方法的準(zhǔn)確度,對于吸收較強(qiáng)的薄膜,隨干涉條紋減少,極大值與極小值包絡(luò)線逐漸匯聚成一條曲線,該方法就不再適用。因此,包絡(luò)法適用于膜層較厚且弱吸收的樣品。防水膜厚儀