干涉測(cè)量法[9-10]是基于光的干涉原理實(shí)現(xiàn)對(duì)薄膜厚度測(cè)量的光學(xué)方法 ,是一種高精度的測(cè)量技術(shù)。采用光學(xué)干涉原理的測(cè)量系統(tǒng)一般具有結(jié)構(gòu)簡(jiǎn)單,成本低廉,穩(wěn)定性好,抗干擾能力強(qiáng),使用范圍廣等優(yōu)點(diǎn)。對(duì)于大多數(shù)的干涉測(cè)量任務(wù),都是通過(guò)薄膜表面和基底表面之間產(chǎn)生的干涉條紋的形狀和分布規(guī)律,來(lái)研究干涉裝置中待測(cè)物理量引入的光程差或者是位相差的變化,從而達(dá)到測(cè)量目的。光學(xué)干涉測(cè)量方法的測(cè)量精度可達(dá)到甚至優(yōu)于納米量級(jí),而利用外差干涉進(jìn)行測(cè)量,其精度甚至可以達(dá)到10-3nm量級(jí)[11]。根據(jù)所使用光源的不同,干涉測(cè)量方法又可以分為激光干涉測(cè)量和白光干涉測(cè)量?jī)纱箢悺<す飧缮鏈y(cè)量的分辨率更高,但是不能實(shí)現(xiàn)對(duì)靜態(tài)信號(hào)的測(cè)量,只能測(cè)量輸出信號(hào)的變化量或者是連續(xù)信號(hào)的變化,即只能實(shí)現(xiàn)相對(duì)測(cè)量。而白光干涉是通過(guò)對(duì)干涉信號(hào)中心條紋的有效識(shí)別來(lái)實(shí)現(xiàn)對(duì)物理量的測(cè)量,是一種測(cè)量方式,在薄膜厚度的測(cè)量中得到了廣泛的應(yīng)用。膜厚儀的干涉測(cè)量能力較高,可以提供精確和可信的膜層厚度測(cè)量結(jié)果。膜厚儀企業(yè)
利用包絡(luò)線法計(jì)算薄膜的光學(xué)常數(shù)和厚度 ,但目前看來(lái)包絡(luò)法還存在很多不足,包絡(luò)線法需要產(chǎn)生干涉波動(dòng),要求在測(cè)量波段內(nèi)存在多個(gè)干涉極值點(diǎn),且干涉極值點(diǎn)足夠多,精度才高。理想的包絡(luò)線是根據(jù)聯(lián)合透射曲線的切點(diǎn)建立的,在沒(méi)有正確方法建立包絡(luò)線時(shí),通常使用拋物線插值法建立,這樣造成的誤差較大。包絡(luò)法對(duì)測(cè)量對(duì)象要求高,如果薄膜較薄或厚度不足情況下,會(huì)造成干涉條紋減少,干涉波峰個(gè)數(shù)較少,要利用干涉極值點(diǎn)建立包絡(luò)線就越困難,且利用拋物線插值法擬合也很困難,從而降低該方法的準(zhǔn)確度。其次,薄膜吸收的強(qiáng)弱也會(huì)影響該方法的準(zhǔn)確度,對(duì)于吸收較強(qiáng)的薄膜,隨干涉條紋減少,極大值與極小值包絡(luò)線逐漸匯聚成一條曲線,該方法就不再適用。因此,包絡(luò)法適用于膜層較厚且弱吸收的樣品。防水膜厚儀主要功能與優(yōu)勢(shì)白光干涉膜厚測(cè)量技術(shù)的優(yōu)化需要對(duì)實(shí)驗(yàn)方法和算法進(jìn)行改進(jìn);
薄膜是一種特殊的微結(jié)構(gòu),在電子學(xué)、摩擦學(xué)、現(xiàn)代光學(xué)等領(lǐng)域得到了廣泛應(yīng)用,因此薄膜的測(cè)試技術(shù)變得越來(lái)越重要。尤其是在厚度這一特定方向上,尺寸很小,基本上都是微觀可測(cè)量的。因此,在微納測(cè)量領(lǐng)域中,薄膜厚度的測(cè)試是一個(gè)非常重要且實(shí)用的研究方向。在工業(yè)生產(chǎn)中,薄膜的厚度直接影響薄膜是否能正常工作。在半導(dǎo)體工業(yè)中,膜厚的測(cè)量是硅單晶體表面熱氧化厚度以及平整度質(zhì)量控制的重要手段。薄膜的厚度會(huì)影響其電磁性能、力學(xué)性能和光學(xué)性能等,因此準(zhǔn)確地測(cè)量薄膜的厚度成為一種關(guān)鍵技術(shù)。
白光干涉頻域解調(diào)是利用頻域分析解調(diào)信號(hào)的一種方法。與時(shí)域解調(diào)裝置相比,測(cè)量裝置幾乎相同,只需將光強(qiáng)測(cè)量裝置更換為光譜儀或CCD。由于時(shí)域解調(diào)中接收到的信號(hào)是一定范圍內(nèi)所有波長(zhǎng)光強(qiáng)疊加,因此將頻譜信號(hào)中各個(gè)波長(zhǎng)的光強(qiáng)疊加起來(lái)即可得到它對(duì)應(yīng)的時(shí)域接收信號(hào)。因此,頻域的白光干涉條紋不僅包含了時(shí)域白光干涉條紋的所有信息,而且包括了時(shí)域干涉條紋中沒(méi)有的波長(zhǎng)信息。在頻域干涉中,當(dāng)兩束相干光的光程差遠(yuǎn)大于光源的相干長(zhǎng)度時(shí),仍然可以在光譜儀上觀察到頻域干涉條紋。這是由于光譜儀內(nèi)部的光柵具有分光作用,可以將寬譜光變成窄帶光譜,從而增加光譜的相干長(zhǎng)度。這種解調(diào)技術(shù)的優(yōu)點(diǎn)是整個(gè)測(cè)量系統(tǒng)中沒(méi)有使用機(jī)械掃描部件,因此在測(cè)量的穩(wěn)定性和可靠性方面得到了顯著提高。常見(jiàn)的頻域解調(diào)方法包括峰峰值檢測(cè)法、傅里葉解調(diào)法和傅里葉變換白光干涉解調(diào)法等。白光干涉膜厚測(cè)量技術(shù)可以應(yīng)用于光學(xué)元件制造中的薄膜厚度管控。
可以使用光譜分析方法來(lái)確定靶丸折射率和厚度。極值法和包絡(luò)法、全光譜擬合法是通過(guò)分析膜的反射或透射光譜曲線來(lái)計(jì)算膜厚度和折射率的方法。極值法測(cè)量膜厚度是根據(jù)薄膜反射或透射光譜曲線上的波峰的位置來(lái)計(jì)算的。對(duì)于弱色散介質(zhì),折射率為恒定值,通過(guò)極大值點(diǎn)的位置可求得膜的光學(xué)厚度,若已知膜折射率即可求解膜的厚度;對(duì)于強(qiáng)色散介質(zhì),首先利用極值點(diǎn)求出膜厚度的初始值,然后利用色散模型計(jì)算折射率與入射波長(zhǎng)的對(duì)應(yīng)關(guān)系,通過(guò)擬合得到色散模型的系數(shù),即可解出任意入射波長(zhǎng)下的折射率。常用的色散模型有cauchy模型、Selimeier模型、Lorenz模型等。白光干涉膜厚儀需要校準(zhǔn),標(biāo)準(zhǔn)樣品的選擇和使用至關(guān)重要。品牌膜厚儀產(chǎn)品原理
白光干涉膜厚測(cè)量技術(shù)可以應(yīng)用于光學(xué)元件制造中的薄膜厚度控制。膜厚儀企業(yè)
本文研究的鍺膜厚度約為300nm,導(dǎo)致白光干涉輸出的光譜只有一個(gè)干涉峰,無(wú)法采用常規(guī)的基于相鄰干涉峰間距解調(diào)的方案,如峰峰值法等。為此,研究人員提出了一種基于單峰值波長(zhǎng)移動(dòng)的白光干涉測(cè)量方案,并設(shè)計(jì)制作了膜厚測(cè)量系統(tǒng)。經(jīng)實(shí)驗(yàn)證明,峰值波長(zhǎng)和溫度變化之間存在很好的線性關(guān)系。利用該方案,研究人員成功測(cè)量了實(shí)驗(yàn)用鍺膜的厚度為338.8nm,實(shí)驗(yàn)誤差主要源于溫度控制誤差和光源波長(zhǎng)漂移。該論文通過(guò)對(duì)納米級(jí)薄膜厚度測(cè)量方案的研究,實(shí)現(xiàn)了對(duì)鍺膜和金膜厚度的測(cè)量,并主要?jiǎng)?chuàng)新點(diǎn)在于提出了基于白光干涉單峰值波長(zhǎng)移動(dòng)的解調(diào)方案,并將其應(yīng)用于極短光程差的測(cè)量。膜厚儀企業(yè)