高精度膜厚儀應用案例

來源: 發(fā)布時間:2024-03-11

干涉法測量可表述為:白光干涉光譜法主要利用光的干涉原理和光譜分光原理,利用光在不同波長處的干涉光強進行求解。光源出射的光經分光棱鏡分成兩束,其中一束入射到參考鏡,另一束入射到測量樣品表面,兩束光均發(fā)生反射并入射到分光棱鏡,此時這兩束光會發(fā)生干涉。干涉光經光譜儀采集得到白光光譜干涉信號,經由計算機處理數(shù)據(jù)、顯示結果變化,之后讀出厚度值或變化量。如何建立一套基于白光干涉法的晶圓膜厚測量裝置,對于晶圓膜厚測量具有重要意義,設備價格、空間大小、操作難易程度都是其影響因素。隨著技術的不斷進步和應用領域的擴展,白光干涉膜厚儀的性能和功能將不斷提高和拓展。高精度膜厚儀應用案例

高精度膜厚儀應用案例,膜厚儀

光譜法是一種以光的干涉效應為基礎的薄膜厚度測量方法,分為反射法和透射法兩種類型。入射光在薄膜-基底-薄膜界面上的反射和透射會引起多光束干涉效應,不同特性的薄膜材料的反射率和透過率曲線是不同的,并且在全光譜范圍內與厚度一一對應。因此,可以根據(jù)這種光譜特性來確定薄膜的厚度和光學參數(shù)。光譜法的優(yōu)點是可以同時測量多個參數(shù),并能有效地排除解的多值性,測量范圍廣,是一種無損測量技術。其缺點是對樣品薄膜表面條件的依賴性強,測量穩(wěn)定性較差,因此測量精度不高,對于不同材料的薄膜需要使用不同波段的光源等。目前,這種方法主要用于有機薄膜的厚度測量。國產膜厚儀供應白光干涉膜厚儀是一種可用于測量薄膜厚度的儀器,適用于透明薄膜和平行表面薄膜的測量。

高精度膜厚儀應用案例,膜厚儀

自上世紀60年代開始,西方的工業(yè)生產線廣泛應用基于X及β射線、近紅外光源開發(fā)的在線薄膜測厚系統(tǒng)。隨著質檢需求的不斷增長,20世紀70年代后,電渦流、超聲波、電磁電容、晶體振蕩等多種膜厚測量技術相繼問世。90年代中期,隨著離子輔助、離子束濺射、磁控濺射、凝膠溶膠等新型薄膜制備技術的出現(xiàn),光學檢測技術也不斷更新迭代,以橢圓偏振法和光度法為主導的高精度、低成本、輕便、高速穩(wěn)固的光學檢測技術迅速占領日用電器和工業(yè)生產市場,并發(fā)展出了個性化定制產品的能力。對于市場占比較大的微米級薄膜,除了要求測量系統(tǒng)具有百納米級的測量準確度和分辨率之外,還需要在存在不規(guī)則環(huán)境干擾的工業(yè)現(xiàn)場下具備較高的穩(wěn)定性和抗干擾能力。

白光干涉膜厚儀基于薄膜對白光的反射和透射產生干涉現(xiàn)象,通過測量干涉條紋的位置和間距來計算出薄膜的厚度。這種儀器在光學薄膜、半導體、涂層和其他薄膜材料的生產和研發(fā)過程中具有重要的應用價值。當白光照射到薄膜表面時,部分光線會被薄膜反射,而另一部分光線會穿透薄膜并在薄膜內部發(fā)生多次反射和折射。這些反射和折射的光線會與原始入射光線產生干涉,形成干涉條紋。通過測量干涉條紋的位置和間距,可以推導出薄膜的厚度信息。白光干涉膜厚儀在光學薄膜領域具有廣泛的應用。光學薄膜是一種具有特殊光學性質的薄膜材料,廣泛應用于激光器、光學鏡片、光學濾波器等光學元件中。通過白光干涉膜厚儀可以實現(xiàn)對光學薄膜厚度的精確測量,保證光學薄膜元件的光學性能。此外,白光干涉膜厚儀還可以用于半導體行業(yè)中薄膜材料的生產和質量控制,確保半導體器件的性能穩(wěn)定和可靠性。白光干涉膜厚儀還可以應用于涂層材料的生產和研發(fā)過程中。涂層材料是一種在材料表面形成一層薄膜的工藝,用于增強材料的表面性能。通過白光干涉膜厚儀可以對涂層材料的厚度進行精確測量,保證涂層的均勻性和穩(wěn)定性,提高涂層材料的質量和性能。工作原理是基于膜層與底材反射率及相位差,通過測量反射光的干涉來計算膜層厚度。

高精度膜厚儀應用案例,膜厚儀

白光干涉測量技術,也被稱為光學低相干干涉測量技術,使用的是低相干的寬譜光源,例如發(fā)光二極管、超輻射發(fā)光二極管等。同所有的光學干涉原理一樣,白光干涉同樣是通過觀察干涉圖樣的變化來分析干涉光程差的變化,進而通過各種解調方案實現(xiàn)對待測物理量的測量。采用寬譜光源的優(yōu)點是由于白光光源的相干長度很小(一般為幾微米到幾十微米之間),所有波長的零級干涉條紋重合于主極大值,即中心條紋,與零光程差的位置對應。中心零級干涉條紋的存在使測量有了一個可靠的位置的參考值,從而只用一個干涉儀即可實現(xiàn)對被測物理量的測量,克服了傳統(tǒng)干涉儀無法實現(xiàn)測量的缺點。同時,相比于其他測量技術,白光干涉測量方法還具有對環(huán)境不敏感、抗干擾能力強、測量的動態(tài)范圍大、結構簡單和成本低廉等優(yōu)點。目前,經過幾十年的研究與發(fā)展,白光干涉技術在膜厚、壓力、應變、溫度、位移等等測量領域已經得到廣泛的應用。Michelson干涉儀的光路長度決定了儀器的精度。膜厚儀24小時服務

光路長度越長,分辨率越高,但同時也更容易受到靜態(tài)振動等干擾因素的影響。高精度膜厚儀應用案例

基于表面等離子體共振傳感的測量方案,利用共振曲線的三個特征參量半高寬、—共振角和反射率小值,通過反演計算得到待測金屬薄膜的厚度。該測量方案可同時得到金屬薄膜的介電常數(shù)和厚度,操作方法簡單。我們利用Kretschmann型結構的表面等離子體共振實驗系統(tǒng),測得金膜在入射光波長分別為632.8nm和652.1nm時的共振曲線,由此得到金膜的厚度為55.2nm。由于該方案是一種強度測量方案,測量精度受環(huán)境影響較大,且測量結果存在多值性的問題,所以我們進一步對偏振外差干涉的改進方案進行了理論分析,根據(jù)P光和S光之間相位差的變化實現(xiàn)厚度測量。高精度膜厚儀應用案例