基于白光干涉光譜單峰值波長移動(dòng)的鍺膜厚度測量方案研究:在對比研究目前常用的白光干涉測量方案的基礎(chǔ)上,我們發(fā)現(xiàn)當(dāng)兩干涉光束的光程差非常小導(dǎo)致其干涉光譜只有一個(gè)干涉峰時(shí),常用的基于兩相鄰干涉峰間距的解調(diào)方案不再適用。為此,我們提出了適用于極小光程差并基于干涉光譜單峰值波長移動(dòng)的測量方案。干涉光譜的峰值波長會(huì)隨著光程差的增大出現(xiàn)周期性的紅移和藍(lán)移,當(dāng)光程差在較小范圍內(nèi)變化時(shí),峰值波長的移動(dòng)與光程差成正比。根據(jù)這一原理,搭建了光纖白光干涉溫度傳感系統(tǒng)對這一測量解調(diào)方案進(jìn)行驗(yàn)證,得到了光纖端面半導(dǎo)體鍺薄膜的厚度。實(shí)驗(yàn)結(jié)果顯示鍺膜的厚度為,與臺(tái)階儀測量結(jié)果存在,這是因?yàn)楸∧け砻姹旧聿⒉还饣_(tái)階儀的測量結(jié)果只能作為參考值。鍺膜厚度測量誤差主要來自光源的波長漂移和溫度控制誤差。膜厚儀依賴于膜層和底部材料的反射率和相位差來實(shí)現(xiàn)這一目的。膜厚儀設(shè)備生產(chǎn)
白光干涉在零光程差處,出現(xiàn)零級干涉條紋,隨著光程差的增加,光源譜寬范圍內(nèi)的每條譜線各自形成的干涉條紋之間互有偏移,疊加的整體效果使條紋對比度下降。測量精度高,可以實(shí)現(xiàn)測量,采用白光干涉原理的測量系統(tǒng)的抗干擾能力強(qiáng),動(dòng)態(tài)范圍大,具有快速檢測和結(jié)構(gòu)緊湊等優(yōu)點(diǎn)。普通的激光干涉與白光干涉之間雖然有差別,但也有許多相似之處??梢哉f,白光干涉實(shí)際上就是將白光看作一系列理想的單色光在時(shí)域上的相干疊加,在頻域上觀察到的就是不同波長對應(yīng)的干涉光強(qiáng)變化曲線。薄膜干涉膜厚儀詳情它可以用不同的軟件進(jìn)行數(shù)據(jù)處理和分析,比如建立數(shù)據(jù)庫、統(tǒng)計(jì)數(shù)據(jù)等。
白光光譜法具有測量范圍大、連續(xù)測量時(shí)波動(dòng)范圍小的優(yōu)點(diǎn),可以解決干涉級次模糊識別的問題。但在實(shí)際測量中,由于誤差、儀器誤差和擬合誤差等因素的影響,干涉級次的測量精度仍然受到限制,會(huì)出現(xiàn)干擾級次的誤判和干擾級次的跳變現(xiàn)象。這可能導(dǎo)致計(jì)算得出的干擾級次m值與實(shí)際譜峰干涉級次m'(整數(shù))之間存在誤差。因此,本文設(shè)計(jì)了以下校正流程圖,基于干涉級次的連續(xù)特性得到了靶丸殼層光學(xué)厚度的準(zhǔn)確值。同時(shí),給出了白光干涉光譜測量曲線。
極值法求解過程計(jì)算簡單,速度快,同時(shí)能確定薄膜的多個(gè)光學(xué)常數(shù)并解決多值性問題,測試范圍廣,但沒有考慮薄膜均勻性和基底色散的因素,因此精度不夠高。此外,由于受曲線擬合精度的限制,該方法對膜厚的測量范圍有要求,通常用于測量薄膜厚度大于200納米且小于10微米的情況,以確保光譜信號中的干涉波峰數(shù)適當(dāng)。全光譜擬合法是基于客觀條件或基本常識來設(shè)置每個(gè)擬合參數(shù)上限、下限,并為該區(qū)域的薄膜生成一組或多組光學(xué)參數(shù)及厚度的初始值,引入適合的色散模型,再通過麥克斯韋方程組的推導(dǎo)得到結(jié)果。該方法能判斷預(yù)設(shè)的初始值是否為要測量的薄膜參數(shù),建立評價(jià)函數(shù)來計(jì)算透過率/反射率與實(shí)際值之間的偏差。只有當(dāng)計(jì)算出的透過率/反射率與實(shí)際值之間的偏差很小時(shí),我們才能認(rèn)為預(yù)設(shè)的初始值就是要測量的薄膜參數(shù)。該儀器的使用需要一定的專業(yè)技能和經(jīng)驗(yàn),操作前需要進(jìn)行充分的培訓(xùn)和實(shí)踐。
為限度提高靶丸內(nèi)爆壓縮效率,期望靶丸所有幾何參數(shù)、物性參數(shù)均為理想球?qū)ΨQ狀態(tài)。因此,需要對靶丸殼層厚度分布進(jìn)行精密的檢測。靶丸殼層厚度常用的測量手法有X射線顯微輻照法、激光差動(dòng)共焦法、白光干涉法等。下面分別介紹了各個(gè)方法的特點(diǎn)與不足,以及各種測量方法的應(yīng)用領(lǐng)域。白光干涉法以白光作為光源,寬光譜的白光準(zhǔn)直后經(jīng)分光棱鏡分成兩束光,一束光入射到固定參考鏡。一束光入射到待測樣品。由計(jì)算機(jī)控制壓電陶瓷(PZT)沿Z軸方向進(jìn)行掃描,當(dāng)兩路之間的光程差為零時(shí),在分光棱鏡匯聚后再次被分成兩束,一束光通過光纖傳輸,并由光譜儀收集,另一束則被傳遞到CCD相機(jī),用于樣品觀測。利用光譜分析算法對干涉信號圖進(jìn)行分析得到薄膜的厚度。該方法能應(yīng)用靶丸殼層壁厚的測量,但是該測量方法需要已知靶丸殼層材料的折射率,同時(shí),該方法也難以實(shí)現(xiàn)靶丸殼層厚度分布的測量??梢耘浜喜煌能浖M(jìn)行分析和數(shù)據(jù)處理,例如建立數(shù)據(jù)庫、統(tǒng)計(jì)數(shù)據(jù)等。膜厚儀設(shè)備生產(chǎn)
精度高的白光干涉膜厚儀通常采用Michelson干涉儀的結(jié)構(gòu)。膜厚儀設(shè)備生產(chǎn)
干涉測量法是基于光的干涉原理實(shí)現(xiàn)對薄膜厚度測量的光學(xué)方法,是一種高精度的測量技術(shù)。采用光學(xué)干涉原理的測量系統(tǒng)一般具有結(jié)構(gòu)簡單,成本低廉,穩(wěn)定性好,抗干擾能力強(qiáng),使用范圍廣等優(yōu)點(diǎn)。對于大多數(shù)的干涉測量任務(wù),都是通過薄膜表面和基底表面之間產(chǎn)生的干涉條紋的形狀和分布規(guī)律,來研究干涉裝置中待測物理量引入的光程差或者是位相差的變化,從而達(dá)到測量目的。光學(xué)干涉測量方法的測量精度可達(dá)到甚至優(yōu)于納米量級,而利用外差干涉進(jìn)行測量,其精度甚至可以達(dá)到10-3nm量級。根據(jù)所使用光源的不同,干涉測量方法又可以分為激光干涉測量和白光干涉測量兩大類。激光干涉測量的分辨率更高,但是不能實(shí)現(xiàn)對靜態(tài)信號的測量,只能測量輸出信號的變化量或者是連續(xù)信號的變化,即只能實(shí)現(xiàn)相對測量。而白光干涉是通過對干涉信號中心條紋的有效識別來實(shí)現(xiàn)對物理量的測量,是一種測量方式,在薄膜厚度的測量中得到了廣泛的應(yīng)用。膜厚儀設(shè)備生產(chǎn)