泰安膜厚儀技術指導

來源: 發(fā)布時間:2024-01-01

在激光慣性約束核聚變實驗中,靶丸的物性參數(shù)和幾何參數(shù)是靶丸制備工藝改進和仿真模擬核聚變實驗過程的基礎,因此如何對靶丸多個參數(shù)進行同步、高精度、無損的綜合檢測是激光慣性約束核聚變實驗中的關鍵問題。以上各種薄膜厚度及折射率的測量方法各有利弊,但針對本文實驗,仍然無法滿足激光核聚變技術對靶丸參數(shù)測量的高要求,靶丸參數(shù)測量存在以下問題:不能對靶丸進行破壞性切割測量,否則,被破壞后的靶丸無法用于于下一步工藝處理或者打靶實驗;需要同時測得靶丸的多個參數(shù),不同參數(shù)的單獨測量,無法提供靶丸制備和核聚變反應過程中發(fā)生的結構變化現(xiàn)象和規(guī)律,并且效率低下、沒有統(tǒng)一的測量標準。靶丸屬于自支撐球形薄膜結構,曲面應力大、難展平的特點導致靶丸與基底不能完全貼合,在微區(qū)內可看作類薄膜結構白光干涉膜厚測量技術可以實現(xiàn)對復雜薄膜結構的測量。泰安膜厚儀技術指導

白光干涉在零光程差處,出現(xiàn)零級干涉條紋,隨著光程差的增加,光源譜寬范圍內的每條譜線各自形成的干涉條紋之間互有偏移,疊加的整體效果使條紋對比度下降。測量精度高,可以實現(xiàn)測量,采用白光干涉原理的測量系統(tǒng)的抗干擾能力強,動態(tài)范圍大,具有快速檢測和結構緊湊等優(yōu)點。普通的激光干涉與白光干涉之間雖然有差別,但也有很多的共同之處??梢哉f,白光干涉實際上就是將白光看作一系列理想的單色光在時域上的相干疊加,在頻域上觀察到的就是不同波長對應的干涉光強變化曲線。隨州膜厚儀廠家現(xiàn)貨白光干涉膜厚測量技術可以對薄膜的表面和內部進行聯(lián)合測量和分析。

微納制造技術的發(fā)展推動著檢測技術向微納領域進軍,微結構和薄膜結構作為微納器件中的重要組成部分,在半導體、醫(yī)學、航天航空、現(xiàn)代制造等領域得到了廣泛的應用,由于其微小和精細的特征,傳統(tǒng)檢測方法不能滿足要求。白光干涉法具有非接觸、無損傷、高精度等特點,被廣泛應用在微納檢測領域,另外光譜測量具有高效率、測量速度快的優(yōu)點。因此,本文提出了白光干涉光譜測量方法并搭建了測量系統(tǒng)。和傳統(tǒng)白光掃描干涉方法相比,其特點是具有較強的環(huán)境噪聲抵御能力,并且測量速度較快。

白光干涉的相干原理早在1975年就已經(jīng)被提出,隨后于1976年在光纖通信領域中獲得了實現(xiàn)。1983年,BrianCulshaw的研究小組報道了白光干涉技術在光纖傳感領域中的應用。隨后在1984年,報道了基于白光干涉原理的完整的位移傳感系統(tǒng)。該研究成果證明了白光干涉技術可以被用于測量能夠轉換成位移的物理參量。此后的幾年間,白光干涉應用于溫度、壓力等的研究相繼被報道。自上世紀九十年代以來,白光干涉技術快速發(fā)展,提供了實現(xiàn)測量的更多的解決方案。近幾年以來,由于傳感器設計與研制的進步,信號處理新方案的提出,以及傳感器的多路復用[39]等技術的發(fā)展,使得白光干涉測量技術的發(fā)展更加迅***光干涉膜厚測量技術可以應用于不同材料的薄膜的研究和制造中。

極值法求解過程計算簡單,速度快,同時確定薄膜的多個光學常數(shù)及解決多值性問題,測試范圍廣,但沒有考慮薄膜均勻性和基底色散的因素,以至于精度不夠高。此外,由于受曲線擬合精度的限制,該方法對膜厚的測量范圍有要求,通常用這種方法測量的薄膜厚度應大于200nm且小于10μm,以確保光譜信號中的干涉波峰數(shù)恰當。全光譜擬合法是基于客觀條件或基本常識來設置每個擬合參數(shù)上限、下限,并為該區(qū)域的薄膜生成一組或多組光學參數(shù)及厚度的初始值,引入適合的色散模型,再根據(jù)麥克斯韋方程組的推導。這樣求得的值自然和實際的透過率和反射率(通過光學系統(tǒng)直接測量的薄膜透射率或反射率)有所不同,建立評價函數(shù),當計算的透過率/反射率與實際值之間的偏差小時,我們就可以認為預設的初始值就是要測量的薄膜參數(shù)。白光干涉膜厚測量技術可以對不同材料的薄膜進行聯(lián)合測量和分析。吉林膜厚儀推薦廠家

白光干涉膜厚測量技術可以對薄膜的各項光學參數(shù)進行聯(lián)合測量和分析。泰安膜厚儀技術指導

在初始相位為零的情況下,當被測光與參考光之間的光程差為零時,光強度將達到最大值。為探測兩個光束之間的零光程差位置,需要精密Z向運動臺帶動干涉鏡頭作垂直掃描運動或移動載物臺,垂直掃描過程中,用探測器記錄下干涉光強,可得白光干涉信號強度與Z向掃描位置(兩光束光程差)之間的變化曲線。干涉圖像序列中某波長處的白光信號強度隨光程差變化示意圖,曲線中光強極大值位置即為零光程差位置,通過零過程差位置的精密定位,即可實現(xiàn)樣品表面相對位移的精密測量;通過確定最大值對應的Z向位置可獲得被測樣品表面的三維高度。泰安膜厚儀技術指導