寶山區(qū)光譜共焦性價比高

來源: 發(fā)布時間:2023-11-19

三坐標(biāo)測量機(jī)是加工現(xiàn)場常用的高精度產(chǎn)品尺寸及形位公差檢測設(shè)備,其具有通用性強(qiáng),精確可靠等優(yōu)點。本文面向一種特殊材料異型結(jié)構(gòu)零件內(nèi)曲面的表面粗糙度測量要求,提出一種基于高精度光譜共焦位移傳感技術(shù)的表面粗糙度集成在線測量方法,利用工業(yè)現(xiàn)場常用的三坐標(biāo)測量機(jī)平臺執(zhí)行輪廓掃描,并記錄測量掃描位置實時空間橫坐標(biāo),根據(jù)空間坐標(biāo)關(guān)系,將測量掃描區(qū)域的微觀高度信息和掃描采樣點組織映射為微觀輪廓,經(jīng)高斯濾波處理和評價從而得到測量對象的表面粗糙度信息。光譜共焦技術(shù)可以在工業(yè)生產(chǎn)中發(fā)揮重要作用。寶山區(qū)光譜共焦性價比高

采用對比測試方法,首先對基于白光共焦光譜技術(shù)的靶丸外表面輪廓測量精度進(jìn)行了考核,圖5(a)是靶丸外表面輪廓的原子力顯微鏡輪廓儀和白光共焦光譜輪廓儀的測量曲線。為了便于比較,將原子力顯微鏡輪廓儀的測量數(shù)據(jù)進(jìn)行了偏移。從圖中可以看出,二者的低階輪廓整體相似,局部的輪廓信息存在一定的偏差,原因在于二者在靶丸赤道附近的精確測量圓周輪廓結(jié)果不一致;此外,白光共焦光譜的信噪比較原子力低,這表明白光共焦光譜適用于靶丸表面低階的輪廓誤差的測量。圖5(b)是靶丸外表面輪廓原子力顯微鏡輪廓儀測量數(shù)據(jù)和白光共焦光譜輪廓儀測量數(shù)據(jù)的功率譜曲線,從圖中可以看出,在模數(shù)低于100的功率譜范圍內(nèi),兩種方法的測量結(jié)果一致性較好,當(dāng)模數(shù)大于100時,白光共焦光譜的測量數(shù)據(jù)大于原子力顯微鏡的測量數(shù)據(jù),這也反應(yīng)了白光共焦光譜儀在高頻段測量數(shù)據(jù)信噪比相對較差的特點。由于光譜傳感器Z向分辨率比原子力低一個量級,同時,受環(huán)境振動、光譜儀采樣率及樣品表面散射光等因素的影響,共焦光譜檢測數(shù)據(jù)高頻隨機(jī)噪聲可達(dá)100nm左右。門頭溝區(qū)光譜共焦零售價格光譜共焦技術(shù)可以在環(huán)境保護(hù)中發(fā)揮重要作用。

在容器玻璃的生產(chǎn)過程中,瓶子的圓度和壁厚是重要的質(zhì)量特征。因此,必須檢查這些參數(shù)。任何有缺陷的容器都會立即被拒絕并返回到玻璃熔體中。高處理速度與防止損壞瓶子的需要相結(jié)合,需要快速的非接觸式測量程序。而光譜共焦傳感器適合這項測量任務(wù)。該系統(tǒng)在兩個點上同步測量。數(shù)據(jù)通過 EtherCAT 接口實時輸出,厚度校準(zhǔn)功能允許在傳感器的整個測量范圍內(nèi)進(jìn)行精確的厚度測量。無論玻璃顏色如何,自動曝光控制都可以實現(xiàn)穩(wěn)定的測量。

隨著科技的進(jìn)步和應(yīng)用的深入,光譜共焦在點膠行業(yè)中的未來發(fā)展將更加廣闊。以下是一些可能的趨勢和發(fā)展方向:高速化:為了滿足不斷提高的生產(chǎn)效率要求,光譜共焦技術(shù)需要更快的光譜分析速度和更短的檢測時間。這需要不斷優(yōu)化算法和改進(jìn)硬件設(shè)備,以提高數(shù)據(jù)處理速度和檢測效率。智能化:通過引入人工智能和機(jī)器學(xué)習(xí)技術(shù),光譜共焦可以實現(xiàn)更復(fù)雜的分析和判斷能力,例如自動識別不同種類的點膠、檢測微小的點膠缺陷等。這將有助于提高檢測精度和降低人工成本。多功能化:為了滿足多樣化的生產(chǎn)需求,光譜共焦技術(shù)可以擴(kuò)展到更多的應(yīng)用領(lǐng)域。例如,將光譜共焦技術(shù)與圖像處理技術(shù)相結(jié)合,可以實現(xiàn)更復(fù)雜的樣品分析和檢測任務(wù)。環(huán)保與可持續(xù)發(fā)展:隨著環(huán)保意識的提高,光譜共焦技術(shù)在點膠行業(yè)中的應(yīng)用也可以從環(huán)保角度出發(fā)。例如,通過光譜分析可以精確地控制點膠的厚度和用量,從而減少材料的浪費和減少對環(huán)境的影響。光譜共焦技術(shù)可以在不同領(lǐng)域的科學(xué)研究中發(fā)揮重要作用。

光譜共焦技術(shù)是在共焦顯微術(shù)基礎(chǔ)上發(fā)展而來,其無需軸向掃描,直接由波長對應(yīng)軸向距離信息,從而大幅提高測量速度。而基于光譜共焦技術(shù)的傳感器是近年來出現(xiàn)的一種高精度、非接觸式的新型傳感器,精度理論上可達(dá) nm 量級。由于光譜共焦傳感器對被測表面狀況要求低,允許被測表面有更大的傾斜角,測量速度快,實時性高,迅速成為工業(yè)測量的熱門傳感器,大量應(yīng)用于精密定位、薄膜厚度測量、微觀輪廓精密測量等領(lǐng)域。本文在論述光譜共焦技術(shù)原理的基礎(chǔ)上,列舉了光譜共焦傳感器在幾何量計量測試中的典型應(yīng)用,探討共焦技術(shù)在未來精密測量的進(jìn)一步應(yīng)用,展望其發(fā)展前景。光譜共焦技術(shù)的應(yīng)用將有助于推動中國科技創(chuàng)新的發(fā)展。徐州光譜共焦性價比高

光譜共焦透鏡組設(shè)計和性能優(yōu)化是光譜共焦技術(shù)研究的重要內(nèi)容之一。寶山區(qū)光譜共焦性價比高

光譜共焦測量技術(shù)由于其具有測量精度高、測量速度快、可以實現(xiàn)非接觸測量的獨特優(yōu)勢而被大量應(yīng)用于工業(yè)級測量。讓我們先來看一下光譜共焦技術(shù)的起源和光譜共焦技術(shù)在精密幾何量計量測試中的成熟典型應(yīng)用。共焦顯微術(shù)的概念首先是由美國的 Minsky 于 1955年提出, 其利用共焦原理搭建臺共焦顯微鏡, 并于1957年申請了專利。自20世紀(jì)90年代,   隨著計算機(jī)技術(shù)的飛速發(fā)展,   共焦顯微術(shù)成了研究的熱點,得到快速的發(fā)展。光譜共焦技術(shù)是在共焦顯微術(shù)基礎(chǔ)上發(fā)展而來,其無需軸向掃描, 直接由波長對應(yīng)軸向距離信息, 從而大幅提高測量速度。   而基于光譜共焦技術(shù)的傳感器是近年來出現(xiàn)的一種高精度、 非接觸式的新型傳感器,   目前精度上可達(dá)nm量級。 共焦測量術(shù)由于其高精度、允許被測表面有更大的傾斜角、測量速度快、實時性高、對被測表面狀況要求低、以及高分辨率的獨特優(yōu)勢,迅速成為工業(yè)測量的熱門傳感器,在生物醫(yī)學(xué)、材料科學(xué)、半導(dǎo)體制造、 表面工程研究、 精密測量等領(lǐng)域得到大量應(yīng)用。寶山區(qū)光譜共焦性價比高