四川工業(yè)納米力學(xué)測試廠家供應(yīng)

來源: 發(fā)布時間:2024-08-28

納米壓痕獲得的材料信息也比較豐富,既可以通過靜態(tài)力學(xué)性能測試獲得材料的硬度、彈性模量、斷裂韌性、相變(疇變) 等信息,也可以通過動態(tài)力學(xué)性能測試獲得被測樣品的存儲模量、損耗模量或損耗因子等。另外,動態(tài)納米壓痕技術(shù)還可以實現(xiàn)對材料微納米尺度存儲模量和損耗模量的模量成像(modulus mapping)。圖1 是美國Hysitron 公司生產(chǎn)的TI-900 Triboindenter 納米壓痕儀的實物圖。納米壓痕作為一種較通用的微納米力學(xué)測試方法,目前仍然有不少研究者致力于對其方法本身的改進(jìn)和發(fā)展。納米力學(xué)測試技術(shù)的發(fā)展推動了納米材料和納米器件的性能優(yōu)化。四川工業(yè)納米力學(xué)測試廠家供應(yīng)

四川工業(yè)納米力學(xué)測試廠家供應(yīng),納米力學(xué)測試

目前納米壓痕在科研界和工業(yè)界都得到了普遍的應(yīng)用,但是它仍然存在一些難以克服的缺點,比如納米壓痕實際上是對材料有損的測試,尤其是對于薄膜來說;其壓針的曲率半徑一般在50 nm 以上,由于分辨率的限制,不能對更小尺度的納米結(jié)構(gòu)進(jìn)行測試;納米壓痕的掃描功能不強(qiáng),掃描速度相對較慢,無法捕捉材料在外場作用下動態(tài)性能的變化?;贏FM 的納米力學(xué)測試方法是另一類被普遍應(yīng)用的測試方法。1986 年,Binnig 等發(fā)明了頭一臺原子力顯微鏡(AFM)。AFM 克服了之前掃描隧道顯微鏡(STM) 只能對導(dǎo)電樣品或半導(dǎo)體樣品進(jìn)行成像的限制,可以實現(xiàn)對絕緣體材料表面原子尺度的成像,具有更普遍的應(yīng)用范圍。AFM 利用探針作為傳感器對樣品表面進(jìn)行測試,不只可以獲得樣品表面的形貌信息,還可以實現(xiàn)對材料微區(qū)物理、化學(xué)、力學(xué)等性質(zhì)的定量化測試。目前,AFM 普遍應(yīng)用于物理學(xué)、化學(xué)、材料學(xué)、生物醫(yī)學(xué)、微電子等眾多領(lǐng)域。四川工業(yè)納米力學(xué)測試廠家供應(yīng)發(fā)展高精度、高穩(wěn)定性納米力學(xué)測試設(shè)備,是當(dāng)前科研工作的重要任務(wù)。

四川工業(yè)納米力學(xué)測試廠家供應(yīng),納米力學(xué)測試

譜學(xué)技術(shù)微納米材料的化學(xué)成分分析主要依賴于各種譜學(xué)技術(shù),包括紫外-可見光譜紅外光譜、x射線熒光光譜、拉曼光譜、俄歇電子能譜、x射線光電子能譜等。另有一類譜儀是基于材料受激發(fā)的發(fā)射譜,是專為研究品體缺陷附近的原子排列狀態(tài)而設(shè)計的,如核磁共振儀、電子自旋共振譜儀、穆斯堡爾譜儀、正電子湮滅等等。熱分析技術(shù),納米材料的熱分析主要是指差熱分析、示差掃描量熱法以及熱重分析。三種方法常常相互結(jié)合,并與其他方法結(jié)合用于研究微納米材料或納米粒子的一些特 征:(1)表面成鍵或非成鍵有機(jī)基團(tuán)或其他物質(zhì)的存在與否、含量多少、熱失重溫度等(2)表面吸附能力的強(qiáng)弱與粒徑的關(guān)系(3)升溫過程中粒徑變化(4)升溫過程中的相轉(zhuǎn)變情況及晶化過程。

Berkovich壓頭是納米壓痕硬度計中較常用的。它可以加工得很尖,而且?guī)缀涡螤钤诤苄〕叨葍?nèi)保持自相似,適合于小尺度的壓痕實驗。目前,該類壓頭的加工水平:端部半徑50nm,典型值約40nm,中心線和面的夾角精度為J=0.025°。在納米壓痕硬度測量中,Berkovich壓頭是一種理想的壓頭。優(yōu)點包括:易獲得好的加工質(zhì)量,很小載荷就能產(chǎn)生塑性,能減小摩擦的影響。Cube-corner壓頭因其三個面相互垂直,像立方體的一個角,故取此名稱。壓頭越尖,就會在接觸區(qū)內(nèi)產(chǎn)生理想的應(yīng)力和應(yīng)變。目前,該種壓頭主要用于斷裂韌性(fracture toughness)的研究。它能在脆性材料的壓痕周圍產(chǎn)生很小的規(guī)則裂紋,這樣的裂紋能在相當(dāng)小的范圍內(nèi)用來估計斷裂韌性。錐形壓頭圓錐具有尖的自相似幾何形狀,從模型角度常利用它的軸對稱特性,納米壓痕硬度的許多模型均基于圓錐壓痕。由于難以加工出尖的圓錐金剛石壓頭,它在小尺度實驗中很少使用。納米力學(xué)測試可以幫助解決材料在實際使用過程中遇到的損傷和磨損問題。

四川工業(yè)納米力學(xué)測試廠家供應(yīng),納米力學(xué)測試

2005 年,中國科學(xué)院上海硅酸鹽研究所的曾華榮研究員在國內(nèi)率先單獨開發(fā)出定頻成像模式的AFAM,但不能測量模量。隨后,同濟(jì)大學(xué)、北京工業(yè)大學(xué)等單位也對這種成像模式進(jìn)行了研究。2011 年初,我們研究組將雙頻共振追蹤技術(shù)用于AFAM,實現(xiàn)了快速的納米模量成像(一幅256×256 像素的圖像只需1~2min),并對其準(zhǔn)確度和靈敏度進(jìn)行了系統(tǒng)研究。較近幾年,AFAM 引起了越來越多國內(nèi)外學(xué)者的關(guān)注。然而,相對于其他AFM 模式,AFAM 的測量原理涉及梁振動力學(xué)和接觸力學(xué),初學(xué)者不容易掌握。在醫(yī)學(xué)領(lǐng)域,納米力學(xué)測試可用于研究細(xì)胞和組織的力學(xué)性質(zhì)。湖北半導(dǎo)體納米力學(xué)測試廠家直銷

納米力學(xué)測試在航空航天領(lǐng)域,為超輕、強(qiáng)度高材料研發(fā)提供支持。四川工業(yè)納米力學(xué)測試廠家供應(yīng)

納米云紋法,云紋法是在20世紀(jì)60年代興起的物體表面全場變形的測量技術(shù)。從上世紀(jì)80年代以來,高頻率光柵制作技術(shù)已經(jīng)日趨成熟。目前高精度云紋干涉法通常使用的高密度光柵頻率已達(dá)到600~2400線mm,其測量位移靈敏度比傳統(tǒng)的云紋法高出幾十倍甚至上百倍。近年來云紋法的研究熱點已進(jìn)入微納尺度的變形測量,并出現(xiàn)與各種高分辨率電鏡技術(shù)、掃描探針顯微技術(shù)相結(jié)合的趨勢。顯微幾何云紋法,在光學(xué)顯微鏡下通過調(diào)整放大倍數(shù)將柵線放大到頻率小于40線/mm,然后利用分辨率高的感光膠片分別記錄變形前后的柵線,兩種柵線干涉后即可獲得材料表面納米級變形的云紋。四川工業(yè)納米力學(xué)測試廠家供應(yīng)