譜學(xué)技術(shù)微納米材料的化學(xué)成分分析主要依賴于各種譜學(xué)技術(shù),包括紫外-可見光譜紅外光譜、x射線熒光光譜、拉曼光譜、俄歇電子能譜、x射線光電子能譜等。另有一類譜儀是基于材料受激發(fā)的發(fā)射譜,是專為研究品體缺陷附近的原子排列狀態(tài)而設(shè)計的,如核磁共振儀、電子自旋共振譜儀、穆斯堡爾譜儀、正電子湮滅等等。熱分析技術(shù),納米材料的熱分析主要是指差熱分析、示差掃描量熱法以及熱重分析。三種方法常常相互結(jié)合,并與其他方法結(jié)合用于研究微納米材料或納米粒子的一些特 征:(1)表面成鍵或非成鍵有機基團或其他物質(zhì)的存在與否、含量多少、熱失重溫度等(2)表面吸附能力的強弱與粒徑的關(guān)系(3)升溫過程中粒徑變化(4)升溫過程中的相轉(zhuǎn)變情況及晶化過程。納米力學(xué)測試能夠揭示材料表面的微觀結(jié)構(gòu)與性能之間的關(guān)系。四川核工業(yè)納米力學(xué)測試原理
納米壓痕技術(shù)通過測量壓針的壓入深度,根據(jù)特定形狀壓針壓入深度與接觸面積的關(guān)系推算出壓針與被測樣品之間的接觸面積。因此,納米壓痕也被稱為深度識別壓痕(depth-sensing indentation,DSI) 技術(shù)。納米壓痕技術(shù)的應(yīng)用范圍非常普遍,可以用于金屬、陶瓷、聚合物、生物材料、薄膜等絕大多數(shù)樣品的測試。納米壓痕相關(guān)儀器的操作和使用也非常方便,加載過程既可以通過載荷控制,也可以通過位移控制,并且只需測量壓針壓入樣品過程中的載荷位移曲線,結(jié)合恰當(dāng)?shù)牧W(xué)模型就可以獲得樣品的力學(xué)信息。海南金屬納米力學(xué)測試供應(yīng)納米力學(xué)測試還可以評估材料在高溫、低溫等極端環(huán)境下的性能表現(xiàn)。
納米壓痕試驗舉例,試驗材料取單晶鋁,試驗在美國 MTS 公司生產(chǎn)的 Nano Indenter XP 型納米硬度儀以及美國 Digital Instruments 公司生產(chǎn)的原子力顯微鏡 (AFM) 上進行。首先將試樣放到納米硬度儀上進行壓痕試驗,根據(jù)設(shè)置的較大載荷或者壓痕深度的不同,試驗時間從數(shù)十分鐘到若干小時不等,中間過程不需人工干預(yù)。試驗結(jié)束后,納米壓痕儀自動計算出試樣的納米硬度值和相關(guān)重要性能指標(biāo)。本試驗中對單晶鋁(110) 面進行檢測,設(shè)置壓痕深度為1.5 μ m,共測量三點,較終結(jié)果取三點的平均值。
銀微納米材料,微納米材料的性能受到其形貌的影響,不同維度類型的銀微納米材料有著不同的應(yīng)用范圍。零維的銀納米材料包括銀原子和粒徑小于15nm 的銀納米粉,主要提高催化性能、 抗細菌及光性能:一維的銀納米線由化學(xué)還原法制備,主要用于透明納米銀線薄膜制備的柔性電子器件;二維的銀微納米片可用球磨法、光誘導(dǎo)法、模板法等方法制備,其在導(dǎo)電漿料及電子元器件等方面有普遍的應(yīng)用:三維的銀微納米材料包括球形和異形銀粉,球形銀粉主要用于導(dǎo)電漿料填充物,異形銀粉主要應(yīng)用催化、光學(xué)等方面。改善制備方法,實現(xiàn)微納米材雨的形貌授制,提升產(chǎn)物穩(wěn)定性,是銀納米材料研究的發(fā)展方向。預(yù)覽與源文檔一致,下載高清無水印微納米技術(shù)是一門擁有廣闊應(yīng)用前景的高新技術(shù),不只在材料科學(xué)領(lǐng)域,微納米材料有著普遍的應(yīng)用,在日常生活和工業(yè)生產(chǎn)中,微納米材料的應(yīng)用實例不勝枚舉。納米力學(xué)測試的發(fā)展促進了納米材料及其應(yīng)用領(lǐng)域的快速發(fā)展和創(chuàng)新。
研究液相環(huán)境下的流體載荷對探針振動產(chǎn)生的影響可以將AFAM 定量化測試應(yīng)用范圍擴展至液相環(huán)境。液相環(huán)境下增加的流體質(zhì)量載荷和流體阻尼使探針振動的共振頻率和品質(zhì)因子都較大程度上減小。Parlak 等采用簡單的解析模型考慮流體質(zhì)量載荷和流體阻尼效應(yīng),可以在液相環(huán)境下從探針的接觸共振頻率導(dǎo)出針尖樣品的接觸剛度值。Tung 等通過嚴(yán)格的理論推導(dǎo),提出通過重構(gòu)流體動力學(xué)函數(shù)的方法,將流體慣性載荷效應(yīng)進行分離。此方法不需要預(yù)先知道探針的幾何尺寸及材料特性,也不需要了解周圍流體的力學(xué)性能。納米力學(xué)測試旨在探究微觀尺度下材料的力學(xué)性能,為科研和工業(yè)領(lǐng)域提供有力支持。湖北科研院納米力學(xué)測試廠家
納米力學(xué)測試在航空航天領(lǐng)域,為超輕、強度高材料研發(fā)提供支持。四川核工業(yè)納米力學(xué)測試原理
對納米元器件的電測量——電壓、電阻和電流——都帶來了一些特有的困難,而且本身容易產(chǎn)生誤差。研發(fā)涉及量子水平上的材料與元器件,這也給人們的電學(xué)測量工作帶來了種種限制。在任何測量中,靈敏度的理論極限是由電路中的電阻所產(chǎn)生的噪聲來決定的。電壓噪聲[1]與電阻的方根、帶寬和一定溫度成正比。高的源電阻限制了電壓測量的理論靈敏度[2]。雖然完全可能在源電阻抗為1W的情況下對1mV的信號進行測量,但在一個太歐姆的信號源上測量同樣的1mV的信號是現(xiàn)實的。四川核工業(yè)納米力學(xué)測試原理