廣西材料科學(xué)納米力學(xué)測(cè)試定制

來源: 發(fā)布時(shí)間:2024-06-05

英國(guó):國(guó)家物理研究所對(duì)各種納米測(cè)量?jī)x器與被測(cè)對(duì)象之間的幾何與物理間的相互作用進(jìn)行了詳盡的研究,繪制了各種納米測(cè)量?jī)x器測(cè)量范圍的理論框架,其研制的微形貌納米測(cè)量?jī)x器測(cè)量范圍是0.01n m~3n m和0.3n m~100n m。Warwick大學(xué)的Chetwynd博士利用X光干涉儀對(duì)長(zhǎng)度標(biāo)準(zhǔn)用的波長(zhǎng)進(jìn)行細(xì)分研究,他利用薄硅片分解和重組X光光束來分析干涉圖形,從干涉儀中提取的干涉條紋與硅晶格有相等的間距,該間距接近0.2nm,他依此作為校正精密位移傳感器的一種亞納米尺度。Queensgate儀器公司設(shè)計(jì)了一套納米定位裝置,它通過壓電驅(qū)動(dòng)元件和電容位置傳感器相結(jié)合的控制裝置達(dá)到納米級(jí)的分辨率和定位精度。納米力學(xué)測(cè)試可以揭示納米材料在受力過程中的微觀結(jié)構(gòu)變化和能量耗散機(jī)制。廣西材料科學(xué)納米力學(xué)測(cè)試定制

廣西材料科學(xué)納米力學(xué)測(cè)試定制,納米力學(xué)測(cè)試

研究液相環(huán)境下的流體載荷對(duì)探針振動(dòng)產(chǎn)生的影響可以將AFAM 定量化測(cè)試應(yīng)用范圍擴(kuò)展至液相環(huán)境。液相環(huán)境下增加的流體質(zhì)量載荷和流體阻尼使探針振動(dòng)的共振頻率和品質(zhì)因子都較大程度上減小。Parlak 等采用簡(jiǎn)單的解析模型考慮流體質(zhì)量載荷和流體阻尼效應(yīng),可以在液相環(huán)境下從探針的接觸共振頻率導(dǎo)出針尖樣品的接觸剛度值。Tung 等通過嚴(yán)格的理論推導(dǎo),提出通過重構(gòu)流體動(dòng)力學(xué)函數(shù)的方法,將流體慣性載荷效應(yīng)進(jìn)行分離。此方法不需要預(yù)先知道探針的幾何尺寸及材料特性,也不需要了解周圍流體的力學(xué)性能。深圳電線電纜納米力學(xué)測(cè)試應(yīng)用納米力學(xué)測(cè)試的發(fā)展促進(jìn)了納米材料及其應(yīng)用領(lǐng)域的快速發(fā)展和創(chuàng)新。

廣西材料科學(xué)納米力學(xué)測(cè)試定制,納米力學(xué)測(cè)試

原位納米力學(xué)測(cè)試系統(tǒng)是一種用于材料科學(xué)領(lǐng)域的儀器,于2011年10月27日啟用。壓痕測(cè)試單元:(1)可實(shí)現(xiàn)70nN~30mN不同加載載荷,載荷分辨率為3nN;(2)位移分辨率:0.006nm,較小位移:0.2nm,較大位移:5um;(3)室溫?zé)崞疲?.05nm/s;(4)更換壓頭時(shí)間:60s。能夠?qū)崿F(xiàn)薄膜或其他金屬或非金屬材料的壓痕、劃痕、摩擦磨損、微彎曲、高溫測(cè)試及微彎曲、NanoDMA、模量成像等功能。力學(xué)測(cè)試芯片大小只為幾平方毫米,亦可放置在電子顯微鏡真空腔中進(jìn)行原位實(shí)時(shí)檢測(cè)。

AFAM 的基本原理是利用探針與樣品的接觸振動(dòng)來對(duì)材料納米尺度的彈性性能進(jìn)行成像或測(cè)量。AFAM 于20 世紀(jì)90 年代中期由德國(guó)薩爾布呂肯無損檢測(cè)研究所的Rabe 博士(女) 首先提出,較初為單點(diǎn)測(cè)量模式。2000 年前后,她們采用逐點(diǎn)掃頻的方式實(shí)現(xiàn)了模量成像功能,但是成像的速度很慢,一幅128×128 像素的圖像需要大約30min,導(dǎo)致圖像的熱漂移比較嚴(yán)重。2005 年,美國(guó)國(guó)家標(biāo)準(zhǔn)局的Hurley 博士(女) 采用DSP 電路控制掃頻和探針的移動(dòng),將成像速度提高了4~5倍(一幅256×256 像素的圖像需要大約25min)。納米力學(xué)測(cè)試在生物醫(yī)學(xué)領(lǐng)域,助力研究細(xì)胞力學(xué)行為,揭示疾病發(fā)生機(jī)制。

廣西材料科學(xué)納米力學(xué)測(cè)試定制,納米力學(xué)測(cè)試

主要的微納米力學(xué)測(cè)量技術(shù):1、微納米壓痕測(cè)試技術(shù),1.1壓入測(cè)試技術(shù),壓人測(cè)試技術(shù)是較初的是表征各種材料力學(xué)性能較常用的方法之一,可以追溯到 20 世紀(jì)初的定量硬度測(cè)試方法。傳統(tǒng)的壓人測(cè)試技術(shù)是利用已知幾何形狀的硬壓頭以預(yù)設(shè)的壓人深度或者載荷作用到較軟的樣品表面,通過測(cè)量殘余壓痕的尺寸計(jì)算相關(guān)的硬度指數(shù)。但壓入測(cè)試技術(shù)的缺陷在所能夠表征的材料力學(xué)參量局限于硬度和彈性模量這2個(gè)基本的參量。1.2 微納米壓痕測(cè)試,近年來新型材料正在向低維化、功能化與復(fù)合化方向飛速發(fā)展,在微納米尺度作用區(qū)域上開展微納米壓痕測(cè)試已被普遍用作評(píng)價(jià)材料因微觀結(jié)構(gòu)變化面誘發(fā)力學(xué)性能變化以及獲得材料物性轉(zhuǎn)變等新現(xiàn)象、新規(guī)律的重要工具。所能夠表征的材料力學(xué)參量也不再局限于硬度和彈性模量這2個(gè)基本的參量。摩擦學(xué)測(cè)試在納米力學(xué)領(lǐng)域具有重要地位,為減少能源損耗提供解決方案。深圳科研院納米力學(xué)測(cè)試廠家

納米力學(xué)測(cè)試設(shè)備的精度和靈敏度對(duì)于獲得準(zhǔn)確的測(cè)試結(jié)果至關(guān)重要。廣西材料科學(xué)納米力學(xué)測(cè)試定制

與傳統(tǒng)硬度計(jì)算不同的是,A 值不是由壓痕照片得到,而是根據(jù) “接觸深度” hc(nm) 計(jì)算得到的。具體關(guān)系式需通過試驗(yàn)來確定,根據(jù)壓頭形狀的不同,一般采用多項(xiàng)式擬合的方法,比如針對(duì)三角錐形壓頭,其擬合結(jié)果為:A = 24.5 + 793hc + 4238+ 332+ 0.059+0.069+ 8.68+ 35.4+ 36. 9式中 “接觸深度”hc由下式計(jì)算得出:hc = h - ε P max/S,式中,ε是與壓頭形狀有關(guān)的常數(shù),對(duì)于球形或三角錐形壓頭可以取ε = 0.75。而S的值可以通過對(duì)載荷-位移曲線的卸載部分進(jìn)行擬合,再對(duì)擬合函數(shù)求導(dǎo)得出,即,式中Q 為擬合函數(shù)。這樣通過試驗(yàn)得到載荷-位移曲線,測(cè)量和計(jì)算試驗(yàn)過程中的載荷 P、壓痕深度h和卸載曲線初期的斜率S,就可以得到樣品的硬度值。該技術(shù)通過記錄連續(xù)的載荷-位移、加卸載曲線,可以獲得材料的硬度、彈性模量、屈服應(yīng)力等指標(biāo),它克服了傳統(tǒng)壓痕測(cè)量只適用于較大尺寸試樣以及只能獲得材料的塑性性質(zhì)等缺陷,同時(shí)也提高了硬度的檢測(cè)精度,使得邊加載邊測(cè)量成為可能,為檢測(cè)過程的自動(dòng)化和數(shù)字化創(chuàng)造了條件。廣西材料科學(xué)納米力學(xué)測(cè)試定制