本文中主要對當(dāng)今幾種主要材料納觀力學(xué)與納米材料力學(xué)特性測試方法:納米硬度技術(shù)、納米云紋技術(shù)、掃描力顯微鏡技術(shù)等進行概述。納米硬度技術(shù)。隨著現(xiàn)代材料表面工程、微電子、集成微光機電 系統(tǒng)、生物和醫(yī)學(xué)材料的發(fā)展試樣本身或表面改性層厚度越來越小。傳統(tǒng)的硬度測量已無法滿足新材料研究的需要,于是納米硬度技術(shù)應(yīng)運而生。納米硬度計是納米硬度測量的主要儀器,它是一種檢測材料微小體積內(nèi)力學(xué)性能的測試儀器,包括壓痕硬度和劃痕硬度兩種工作模式。由于壓痕或劃痕深度一般控制在微米甚至納米尺度,因此該類儀器已成為電子薄膜、涂層、材料表面及其改性的力學(xué)性能檢測的理想手段。它不需要將表層從基體上剝離,便可直接給出材料表層力學(xué)性質(zhì)的空間分布。通過納米力學(xué)測試,可評估納米材料在極端環(huán)境下的可靠性。深圳高校納米力學(xué)測試廠家直銷
AFAM 方法提出之后,不少研究者對方法的準(zhǔn)確度和靈敏度方面進行了研究。Hurley 等分析了空氣濕度對AFAM 定量化測量結(jié)果的影響。Rabe 等分析了探針基片對AFAM 定量化測量的影響。Hurley 等詳細對比了AFAM 單點測試與納米壓痕以及聲表面波譜方法的測試原理、空間分辨率、適用性及測試優(yōu)缺點等。Stan 等提出一種雙參考材料的方法,此方法不需要了解針尖的力學(xué)性能,可以在一定程度上提高測試的準(zhǔn)確度。他們還提出了一種基于多峰接觸的接觸力學(xué)模型,在一定程度上可以提高測試的準(zhǔn)確度。Turner 等通過嚴格的理論推導(dǎo)研究了探針不同階彎曲振動和扭轉(zhuǎn)振動模態(tài)的靈敏度問題。Muraoka提出一種在探針微懸臂末端附加集中質(zhì)量的方法,以提高測試靈敏度。Rupp 等對AFAM測試過程中針尖樣品之間的非線性相互作用進行了研究。重慶半導(dǎo)體納米力學(xué)測試系統(tǒng)跨學(xué)科合作,推動納米力學(xué)測試技術(shù)不斷創(chuàng)新,滿足多領(lǐng)域需求。
微納米材料力學(xué)性能測試系統(tǒng)是一種用于機械工程領(lǐng)域的科學(xué)儀器,于2008年11月18日啟用??v向載荷力和位移。載荷力分辨率:3nN(在施加1μN的條件下);較小載荷接觸力:<100nN;較大載荷:10mN;位移分辨率:0.0004nm;較小位移:<0.2nm;較大位移:5μm;熱漂移:<0.05nm/s(在室溫條件下)。 橫向載荷力和位移。載荷力的分辨率:0.5μN;較小橫向力:<5μN;較大橫向力:2mN;位移分辨率:3nm;較小位移:<5nm;較大位移:15μm;熱漂移:<0.05nm/s(在室溫條件下)。磨損面積范圍:4μm x 4μm 到 60μm x 60μm;磨損速率:≤180μm/s;縱向載荷范圍:100nN – 1mN。X-Y stage。
即使源電阻大幅降低至1MW,對一個1mV的信號的測量也接近了理論極限,因此要使用一個普通的數(shù)字多用表(DMM)進行測量將變得十分困難。除了電壓或電流靈敏度不夠高之外,許多DMM在測量電壓時的輸入偏移電流很高,而相對于那些納米技術(shù)[3]常常需要的、靈敏度更高的低電平DC測量儀器而言,DMM的輸入電阻又過低。這些特點增加了測量的噪聲,給電路帶來不必要的干擾,從而造成測量的誤差。系統(tǒng)搭建完畢后,必須對其性能進行校驗,而且消除潛在的誤差源。誤差的來源可以包括電纜、連接線、探針[5]、沾污和熱量。下面的章節(jié)中將對降低這些誤差的一些途徑進行探討。納米力學(xué)測試可以應(yīng)用于納米材料的質(zhì)量控制和品質(zhì)檢測,確保產(chǎn)品符合規(guī)定的力學(xué)性能要求。
分子微納米材料在超聲診療學(xué)中的應(yīng)用,分子影像可以非侵入性探測體內(nèi)生理和病理情況的變化,有利于研究疾病的病因、發(fā)生、發(fā)展及轉(zhuǎn)歸。近年來由于微納米技術(shù)的飛速發(fā)展,超聲分子影像也取得了長足的進步。微納米材料具有獨特的優(yōu)點,可以負載多種藥物/分子、容易進行理化修飾、可以進行多重靶向運輸?shù)?。通過與超聲結(jié)合可以介導(dǎo)血腦屏障的開放,實現(xiàn)多模態(tài)成像、診療一體化、重癥微環(huán)境標(biāo)志物監(jiān)控和信號放大。進一步研究應(yīng)著眼于其生物安全性,實現(xiàn)材料的無潛在致病毒性、無脫靶效應(yīng)及能進行體內(nèi)代謝等,解決這些問題將為疾病提供一種新的診療模式。測試內(nèi)容豐富多樣,包括硬度、彈性模量、摩擦系數(shù)等,助力材料研究。福建核工業(yè)納米力學(xué)測試
納米力學(xué)測試可以幫助研究人員了解納米材料的變形和斷裂機制,為納米材料的設(shè)計和優(yōu)化提供指導(dǎo)。深圳高校納米力學(xué)測試廠家直銷
SFM納米力學(xué)測試。在掃描隧道顯微鏡(STM)發(fā)明以后,基于STM,人們又陸續(xù)發(fā)展一系列相似的掃描成像顯微技術(shù),它們包括原子力顯微鏡(AFM)、摩擦力顯微鏡(FFM)、磁力顯微鏡、靜電力顯微等,統(tǒng)稱為掃描力顯微鏡(SFM)。由于這些掃描力顯微鏡成像的工作原理是基于探針與被測樣品之間的原子力、摩擦力、磁力或靜電力,因此,它們自然地成為測量探針與被測樣品之間微觀原子力、摩擦力、磁力或靜電力的有力工具。采用原子力顯微鏡對飽和鐵轉(zhuǎn)鐵蛋白和脫鐵轉(zhuǎn)鐵蛋白與轉(zhuǎn)鐵蛋白抗體之間的相互作用進行研究通過原子力顯微鏡對分子間力的曲線進行探測,比較飽和鐵轉(zhuǎn)鐵蛋白和脫鐵轉(zhuǎn)鐵蛋白與抗體之間的作用力的差異。深圳高校納米力學(xué)測試廠家直銷