(1)采集環(huán)節(jié)借助語音識別技術(shù)將語音實時轉(zhuǎn)換為文本,壓縮稿件生產(chǎn)過程中的重復(fù)性工作,提高內(nèi)容生產(chǎn)效率。采用智能寫作機器人,提升新聞資訊寫作的時效性。(2)編輯環(huán)節(jié)采用AIGC技術(shù)對視頻畫質(zhì)修復(fù)與增強,提升視頻質(zhì)量。此外,可利用AIGC技術(shù)對視頻場景識別,實現(xiàn)智能視頻剪輯。如人民日報社利用“智能云剪輯師”并能夠?qū)崿F(xiàn)自動匹配字幕、人物實時追蹤與畫面抖動修復(fù)等功能。2022冬奧會期間,央視視頻通過AI智能內(nèi)容剪輯系統(tǒng),高效生產(chǎn)與發(fā)布冰雪項目視頻集錦內(nèi)容。(3)播報環(huán)節(jié)AI合成主播開創(chuàng)了新聞領(lǐng)域?qū)崟r語音及人物動畫合成的先河,只需要輸入所需要播發(fā)的文本內(nèi)容,計算機就會生成相應(yīng)的AI合成主播播報的新聞視頻,并確保視頻中人物音頻和表情、唇動保持自然一致,展現(xiàn)與真人主播無異的信息傳達(dá)效果。2、AIGC在影視行業(yè)應(yīng)用前期創(chuàng)作中期拍攝后期制作劇本創(chuàng)作虛擬場景生成畫質(zhì)修復(fù)畫質(zhì)增強AI視頻剪輯人臉替換、人聲替換在前期創(chuàng)作階段,AIGC可通過對海量劇本進(jìn)行學(xué)習(xí),并按照預(yù)定風(fēng)格生成劇本,創(chuàng)作者可進(jìn)行二次篩選與加工,激發(fā)創(chuàng)作靈感,縮短創(chuàng)作周期。在中期拍攝階段,可通過人工智能合成虛擬場景,將無法實拍或成本過高的場景生成出來,提升視聽體驗。比如。 它應(yīng)該像大腦一樣運轉(zhuǎn)?它是否需要軀體?漳州搜狗AIGC費用
AIGC賦能服飾電商,助力降本增效AIGC可以為商家提供大量創(chuàng)意素材,電商廣告正是對創(chuàng)意營銷素材需求量很大的領(lǐng)域,阿里巴巴的AI設(shè)計師“魯班”就是應(yīng)用于此。除了通用型廣告,AIGC在電商服飾領(lǐng)域用途更多。一般說來,服飾領(lǐng)域都采用“小單快返”的模式,即先小批量生產(chǎn)多種樣式的服飾產(chǎn)品投入市場,快速獲取市場反饋,對精良產(chǎn)品加大投入,在試出爆款的同時減小庫存壓力。但這種方式對產(chǎn)品圖片的需求量很大,如果有上千種服飾產(chǎn)品分別找模特再牌照修圖,無疑會耗費極大的時間和成本。成立于2020年的ZMO公司就運用AIGC解決這個問題,商家只需在ZMO平臺上傳產(chǎn)品圖和模特圖就可以得到展示圖。借助AIGC,更多服飾相關(guān)的市場策略都可以低成本的實現(xiàn)。即使沒有專業(yè)模特,虛擬人模特及廣告也可以發(fā)揮作用,甚至還可以調(diào)整虛擬人的相貌來適配不同風(fēng)格的服飾。、AIGC打造虛擬主播,提升直播效率隨著概念的傳播,虛擬主播正日益成為許多商家的選擇。與真人主播不同,虛擬主播可以全天無間斷的直播,突破時間和空間的限制。寧德公司AIGC趨勢所謂智能,就是人腦比較過去、預(yù)測未來的能力。
應(yīng)用:在擴散模型(diffusionmodel)的基礎(chǔ)上產(chǎn)生了多種令人印象深刻的應(yīng)用,比如:圖像超分、圖像上色、文本生成圖片、全景圖像生成等。如下圖,中間圖像作為輸入,基于擴散模型,生成左右視角兩張圖,輸入圖像與生成圖像共同拼接程一張全景圖像。生成全景圖像產(chǎn)品與模型:在擴散模型的基礎(chǔ)上,各公司與研究機構(gòu)開發(fā)出的代替產(chǎn)品如下:DALL-E2(OpenAI文本生成圖像,圖像生成圖像)DALL-E2由美國OpenAI公司在2022年4月發(fā)布,并在2022年9月28日,在OpenAI網(wǎng)站向公眾開放,提供數(shù)量有限的無償圖像和額外的購買圖像服務(wù)。Imagen(GoogleResearch文本生成圖像)Imagen是2022年5月谷歌發(fā)布的文本到圖像的擴散模型,該模型目前不對外開放。用戶可通過輸入描述性文本,生成圖文匹配的圖像。StableDiffusion(StabilityAI文本生成圖像,代碼與模型開源)2022年8月,StabilityAI發(fā)布了StableDiffusion,這是一種類似于DALL-E2與Imagen的開源Diffusion模型,代碼與模型權(quán)重均向公眾開放。(4)Transformer2017年由谷歌提出,采用注意力機制(attention)對輸入數(shù)據(jù)重要性的不同而分配不同權(quán)重,其并行化處理的優(yōu)勢能夠使其在更大的數(shù)據(jù)集訓(xùn)練,加速了GPT等預(yù)訓(xùn)練大模型的發(fā)展。
隨著人工智能技術(shù)的不斷發(fā)展,AIGC(ArtificialIntelligenceGeneratedContent)已經(jīng)成為了我們生活中不可或缺的一部分。無論是在電商、辦公還是其他行業(yè)中,AIGC都可以幫助人們更高效地完成任務(wù),提高工作效率。在電商領(lǐng)域,AIGC可以生成商品標(biāo)題、描述、廣告文案和廣告圖等內(nèi)容,幫助企業(yè)更好地推廣產(chǎn)品。通過AIGC技術(shù),企業(yè)可以快速生成大量的精良內(nèi)容,提高商品的曝光率和銷售量。同時,AIGC還可以幫助企業(yè)更好地了解消費者的需求和喜好,從而更好地制定營銷策略。在辦公領(lǐng)域,AIGC可以幫助人們更輕松地完成各種任務(wù),如寫周報日報、寫方案、寫運營活動、制作PPT等。通過AIGC技術(shù),人們可以快速生成高質(zhì)量的文字內(nèi)容,減少繁瑣的重復(fù)性工作,提高工作效率。此外,AIGC還可以幫助人們更好地表達(dá)自己的想法和觀點,提高溝通效果??傊?,AIGC技術(shù)的應(yīng)用范圍非常普遍,可以幫助人們更高效地完成任務(wù),提高工作效率。未來隨著技術(shù)的不斷發(fā)展和完善,相信AIGC會在更多領(lǐng)域發(fā)揮更大的作用。 意識和環(huán)境是困擾研究的兩大難題。我們到底應(yīng)該怎樣去制造智能機器呢?
大腦模擬主條目:控制論和計算神經(jīng)科學(xué)20世紀(jì)40年代到50年代,許多研究者探索神經(jīng)病學(xué),信息理論及控制論之間的聯(lián)系。其中還造出一些使用電子網(wǎng)絡(luò)構(gòu)造的初步智能,如。這些研究者還經(jīng)常在普林斯頓大學(xué)和英國的RATIOCLUB舉行技術(shù)協(xié)會會議.直到1960,大部分人已經(jīng)放棄這個方法,盡管在80年代再次提出這些原理。符號處理主條目:GOFAI當(dāng)20世紀(jì)50年代,數(shù)字計算機研制成功,研究者開始探索人類智能是否能簡化成符號處理。研究主要集中在卡內(nèi)基梅隆大學(xué),斯坦福大學(xué)和麻省理工學(xué)院,而各自有孑立的研究風(fēng)格。JOHNHAUGELAND稱這些方法為GOFAI(出色的老式人工智能)。60年代,符號方法在小型證明程序上模擬高級思考有很大的成就。基于控制論或神經(jīng)網(wǎng)絡(luò)的方法則置于次要。60~70年代的研究者確信符號方法可以成功創(chuàng)造強人工智能的機器,同時這也是他們的目標(biāo)。 AI可以從不確定的條件作出決策;還有神經(jīng)網(wǎng)絡(luò),被視為實現(xiàn)人工智能的可能途徑。軟件AIGC運營
我們?nèi)绾尾拍苤圃斐稣嬲饬x上的智能機器——這樣的智能機器將不再只是對人類大腦的簡單模仿。漳州搜狗AIGC費用
短視頻策劃:AIGC可以利用計算機數(shù)據(jù)算法和圖像處理技術(shù),自動生成短視頻拍攝的腳本,生成對應(yīng)的參考樣片,也可以從大量的素材中選取的片段,并進(jìn)行自動剪輯和編輯,以快速生成吸引人的短視頻內(nèi)容。廣告創(chuàng)意:AIGC可以利用計算機視覺和圖像識別算法,分析大量的圖像和視頻數(shù)據(jù),從中提取特征并生成創(chuàng)意性的廣告內(nèi)容。它可以根據(jù)目標(biāo)受眾的喜好和需求,自動生成個性化的廣告,并優(yōu)化廣告投放效果。游戲設(shè)計:AIGC可以在游戲設(shè)計過程中發(fā)揮重要作用。它可以幫助游戲開發(fā)人員創(chuàng)建智能的虛擬角色和敵對AI,增強游戲的可玩性和挑戰(zhàn)性。同時,AIGC還可以分析玩家行為和反饋數(shù)據(jù),提供個性化的游戲體驗,優(yōu)化游戲關(guān)卡設(shè)計和平衡性。教育內(nèi)容:AIGC可以為教育領(lǐng)域帶來許多創(chuàng)新。它可以根據(jù)學(xué)生的學(xué)習(xí)情況和興趣,生成個性化的教學(xué)內(nèi)容和練習(xí)題,提供定制化的學(xué)習(xí)路徑和反饋。 漳州搜狗AIGC費用