南平互聯(lián)網(wǎng)AIGC案例

來(lái)源: 發(fā)布時(shí)間:2024-01-31

    VisionTransformer(ViT)2020年由谷歌團(tuán)隊(duì)提出,將Transformer應(yīng)用至圖像分類任務(wù),此后Transformer開始在CV領(lǐng)域大放異彩。ViT將圖片分為14*14的patch,并對(duì)每個(gè)patch進(jìn)行線性變換得到固定長(zhǎng)度的向量送入Transformer,后續(xù)與標(biāo)準(zhǔn)的Transformer處理方式相同。以ViT為基礎(chǔ)衍生出了多重精良模型,如SwinTransformer,ViTAETransformer等。ViT通過將人類先驗(yàn)經(jīng)驗(yàn)知識(shí)引入網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計(jì),獲得了更快的收斂速度、更低的計(jì)算代價(jià)、更多的特征尺度、更強(qiáng)的泛化能力,能夠更好地學(xué)習(xí)和編碼數(shù)據(jù)中蘊(yùn)含的知識(shí),正在成為視覺領(lǐng)域的基礎(chǔ)網(wǎng)絡(luò)架構(gòu)。以ViT為代替的視覺大模型賦予了AI感知、理解視覺數(shù)據(jù)的能力,助力AIGC發(fā)展。2、預(yù)訓(xùn)練大模型雖然過去各種模型層出不窮,但是生成的內(nèi)容偏簡(jiǎn)單且質(zhì)量不高,遠(yuǎn)不能夠滿足現(xiàn)實(shí)場(chǎng)景中靈活多變以高質(zhì)量?jī)?nèi)容生成的要求。預(yù)訓(xùn)練大模型的出現(xiàn)使AIGC發(fā)生質(zhì)變,諸多問題得以解決。大模型在CV/NLP/多模態(tài)領(lǐng)域成果頗豐,并如下表的經(jīng)典模型。 70年代許多新方法被用于AI開發(fā),如MINSKY的構(gòu)造理論.南平互聯(lián)網(wǎng)AIGC案例

南平互聯(lián)網(wǎng)AIGC案例,AIGC

    現(xiàn)代電子計(jì)算機(jī)的產(chǎn)生便是對(duì)人腦思維功能的模擬,是對(duì)人腦思維的信息過程的模擬。弱人工智能如今不斷地迅猛發(fā)展,尤其是2008年經(jīng)濟(jì)危機(jī)后,美日歐希望借機(jī)器人等實(shí)現(xiàn)再工業(yè)化,工業(yè)機(jī)器人以比以往任何時(shí)候更快的速度發(fā)展,更加帶動(dòng)了弱人工智能和相關(guān)領(lǐng)域產(chǎn)業(yè)的不斷突破,很多必須用人來(lái)做的工作如今已經(jīng)能用機(jī)器人實(shí)現(xiàn)。而強(qiáng)人工智能則暫時(shí)處于瓶頸,還需要科學(xué)家們和人類的努力。用來(lái)研究人工智能的主要物質(zhì)基礎(chǔ)以及能夠?qū)崿F(xiàn)人工智能技術(shù)平臺(tái)的機(jī)器就是計(jì)算機(jī),人工智能的發(fā)展歷史是和計(jì)算機(jī)科學(xué)技術(shù)的發(fā)展史聯(lián)系在一起的。除了計(jì)算機(jī)科學(xué)以外,人工智能還涉及信息論、控制論、自動(dòng)化、仿生學(xué)、生物學(xué)、心理學(xué)、數(shù)理邏輯、語(yǔ)言學(xué)、醫(yī)學(xué)和哲學(xué)等多門學(xué)科。 南平chatgptAIGC形成智能、感覺、創(chuàng)造力以及知覺等基礎(chǔ)的,就是大腦的記憶-預(yù)測(cè)系統(tǒng)。

南平互聯(lián)網(wǎng)AIGC案例,AIGC

    一.AIGC是什么?AIGC(即ArtificialIntelligenceGeneratedContent),中文譯為人工智能生成內(nèi)容。簡(jiǎn)單來(lái)說(shuō),就是以前本來(lái)需要人類用思考和創(chuàng)造力才能完成的工作,現(xiàn)在可以利用人工智能技術(shù)來(lái)替代我們完成。在狹義上,AIGC是指利用AI自動(dòng)生成內(nèi)容的生產(chǎn)方式,比如自動(dòng)寫作、自動(dòng)設(shè)計(jì)等。在廣義上,AIGC是指像人類一樣具備生成創(chuàng)造能力的AI技術(shù),它可以基于訓(xùn)練數(shù)據(jù)和生成算法模型,自主生成創(chuàng)造新的文本、圖像、音樂、視頻、3D交互內(nèi)容等各種形式的內(nèi)容和數(shù)據(jù)。二.AIGC發(fā)展歷史AIGC的發(fā)展歷程可以分成三個(gè)階段:早期萌芽階段(上世紀(jì)50年代至90年代中期),沉淀累積階段(上世紀(jì)90年代至本世紀(jì)10年代中期),快速發(fā)展階段(本世紀(jì)10年代中期至今)。在早期萌芽階段(1950s~1990s)由于技術(shù)限制,AIGC有限于小范圍實(shí)驗(yàn)和應(yīng)用,例如1957年出現(xiàn)了首支電腦創(chuàng)作的音樂作品《依利亞克組曲(IlliacSuite)》。然而在80年代末至90年代中期,由于高成本和難以商業(yè)化,AIGC的資本投入有限,因此未能取得許多斐然進(jìn)展。作者:HOTAIGC鏈接:源:簡(jiǎn)書著作權(quán)歸作者所有。商業(yè)轉(zhuǎn)載請(qǐng)聯(lián)系作者獲得授權(quán),非商業(yè)轉(zhuǎn)載請(qǐng)注明出處。

    諸如我們熟知的聊天對(duì)話模型ChatGPT,基于。計(jì)算機(jī)視覺(CV)預(yù)訓(xùn)練大模型自然語(yǔ)言處理(NLP)預(yù)訓(xùn)練大模型多模態(tài)預(yù)訓(xùn)練大模型微軟Florence(SwinTransformer)谷歌Bert/LaMDA/PaLMOpenAI的CLIP/DALL-EOpenAI的GPT-3/ChatGPT微軟的GLIPStabilityAI的StableDiffusion(1)計(jì)算機(jī)視覺(CV)預(yù)訓(xùn)練大模型FlorenceFlorence是微軟在2021年11月提出的視覺基礎(chǔ)模型。Florence采用雙塔Transformer結(jié)構(gòu)。文本采用12層Transformer,視覺采用SwinTransformer。通過來(lái)自互聯(lián)網(wǎng)的9億圖文對(duì),采用UnifiedContrasiveLearning機(jī)制將圖文映射到相同空間中。其可處理的下游任務(wù)包括:圖文檢索、圖像分類、目標(biāo)檢測(cè)、視覺對(duì)答以及動(dòng)作識(shí)別。(2)自然語(yǔ)言處理(NLP)預(yù)訓(xùn)練大模型LaMDALaMDA是谷歌在2021年發(fā)布的大規(guī)模自然語(yǔ)言對(duì)話模型。LaMDA的訓(xùn)練過程分為預(yù)訓(xùn)練與微調(diào)兩步。在預(yù)訓(xùn)練階段,谷歌從公共數(shù)據(jù)數(shù)據(jù)中收集了,feed給LaMDA,讓其對(duì)自然語(yǔ)言有初步認(rèn)識(shí)。到這一步通過輸入prompt能夠預(yù)測(cè)上下文,但是這種回答往往不夠準(zhǔn)確,需要二次調(diào)優(yōu)。谷歌的做法是讓模型根據(jù)提問輸出多個(gè)回答,將這些回答輸入到分類器中,輸出回答結(jié)果的安全性Safety,敏感性Sensible。所謂智能,就是人腦比較過去、預(yù)測(cè)未來(lái)的能力。

南平互聯(lián)網(wǎng)AIGC案例,AIGC

    人工智能技術(shù)的飛速發(fā)展,生成式AI正在改變我們處理信息和解決問題的方式。作為生成式AI的代替,AIGC為眾多企業(yè)帶來(lái)了前所未有的價(jià)值。在本文中,我們將探討AIGC如何通過以下10種方式為企業(yè)帶來(lái)實(shí)質(zhì)性的幫助。數(shù)據(jù)分析和預(yù)測(cè)AIGC可以利用大數(shù)據(jù)和機(jī)器學(xué)習(xí)算法,幫助企業(yè)進(jìn)行數(shù)據(jù)分析和預(yù)測(cè),從而更好地了解市場(chǎng)趨勢(shì)和客戶需求。例如,在金融行業(yè),AIGC可以分析大量歷史數(shù)據(jù),預(yù)測(cè)股市走向,為投資決策提供有力支持。智能自動(dòng)化AigC可以用于各種任務(wù)的自動(dòng)化,如聊天機(jī)器人、智能客服、智能推薦等,從而提高客戶服務(wù)質(zhì)量和效率。例如,在電商領(lǐng)域,AIGC可以根據(jù)用戶的瀏覽歷史和購(gòu)買記錄,為其推薦相關(guān)產(chǎn)品,提高轉(zhuǎn)化率。決策支持AigC可以為企業(yè)提供決策支持,通過分析大量數(shù)據(jù)和信息,給出比較好解決方案。如在醫(yī)療行業(yè),AIGC可以幫助醫(yī)生診斷疾病、制定醫(yī)療方案,提高醫(yī)療效果和患者滿意度。內(nèi)容創(chuàng)作AIGC可以快速生成各種類型的內(nèi)容,如文章、視頻、圖片等,滿足企業(yè)的營(yíng)銷需求。在廣告行業(yè),AIGC可以根據(jù)目標(biāo)客戶的需求和興趣,創(chuàng)作個(gè)性化的廣告內(nèi)容,提高廣告效果。語(yǔ)言翻譯AigC可以實(shí)現(xiàn)高效、準(zhǔn)確的翻譯服務(wù)。 這個(gè)項(xiàng)目目的是研制一種能完成許多戰(zhàn)地任務(wù)的機(jī)器人。由于項(xiàng)目缺陷和成功無(wú)望,PENTAGON停止了項(xiàng)目的經(jīng)費(fèi)。什么是AIGC費(fèi)用

問題."邏輯行家"對(duì)公眾和AI研究領(lǐng)域產(chǎn)生的影響使它成為AI發(fā)展中一個(gè)重要的里程碑.南平互聯(lián)網(wǎng)AIGC案例

    AIGC賦能服飾電商,助力降本增效AIGC可以為商家提供大量創(chuàng)意素材,電商廣告正是對(duì)創(chuàng)意營(yíng)銷素材需求量很大的領(lǐng)域,阿里巴巴的AI設(shè)計(jì)師“魯班”就是應(yīng)用于此。除了通用型廣告,AIGC在電商服飾領(lǐng)域用途更多。一般說(shuō)來(lái),服飾領(lǐng)域都采用“小單快返”的模式,即先小批量生產(chǎn)多種樣式的服飾產(chǎn)品投入市場(chǎng),快速獲取市場(chǎng)反饋,對(duì)精良產(chǎn)品加大投入,在試出爆款的同時(shí)減小庫(kù)存壓力。但這種方式對(duì)產(chǎn)品圖片的需求量很大,如果有上千種服飾產(chǎn)品分別找模特再牌照修圖,無(wú)疑會(huì)耗費(fèi)極大的時(shí)間和成本。成立于2020年的ZMO公司就運(yùn)用AIGC解決這個(gè)問題,商家只需在ZMO平臺(tái)上傳產(chǎn)品圖和模特圖就可以得到展示圖。借助AIGC,更多服飾相關(guān)的市場(chǎng)策略都可以低成本的實(shí)現(xiàn)。即使沒有專業(yè)模特,虛擬人模特及廣告也可以發(fā)揮作用,甚至還可以調(diào)整虛擬人的相貌來(lái)適配不同風(fēng)格的服飾。、AIGC打造虛擬主播,提升直播效率隨著概念的傳播,虛擬主播正日益成為許多商家的選擇。與真人主播不同,虛擬主播可以全天無(wú)間斷的直播,突破時(shí)間和空間的限制。南平互聯(lián)網(wǎng)AIGC案例