大腦模擬主條目:控制論和計算神經(jīng)科學20世紀40年代到50年代,許多研究者探索神經(jīng)病學,信息理論及控制論之間的聯(lián)系。其中還造出一些使用電子網(wǎng)絡(luò)構(gòu)造的初步智能,如。這些研究者還經(jīng)常在普林斯頓大學和英國的RATIOCLUB舉行技術(shù)協(xié)會會議.直到1960,大部分人已經(jīng)放棄這個方法,盡管在80年代再次提出這些原理。符號處理主條目:GOFAI當20世紀50年代,數(shù)字計算機研制成功,研究者開始探索人類智能是否能簡化成符號處理。研究主要集中在卡內(nèi)基梅隆大學,斯坦福大學和麻省理工學院,而各自有孑立的研究風格。JOHNHAUGELAND稱這些方法為GOFAI(出色的老式人工智能)。60年代,符號方法在小型證明程序上模擬高級思考有很大的成就。基于控制論或神經(jīng)網(wǎng)絡(luò)的方法則置于次要。60~70年代的研究者確信符號方法可以成功創(chuàng)造強人工智能的機器,同時這也是他們的目標。 AI可以從不確定的條件作出決策;還有神經(jīng)網(wǎng)絡(luò),被視為實現(xiàn)人工智能的可能途徑。泉州bilibiliAIGC
認知模擬經(jīng)濟學家赫伯特·西蒙和艾倫·紐厄爾研究人類問題解決能力和嘗試將其形式化,同時他們?yōu)槿斯ぶ悄艿幕驹泶蛳禄A(chǔ),如認知科學,運籌學和經(jīng)營科學。他們的研究團隊使用心理學實驗的結(jié)果開發(fā)模擬人類解決問題方法的程序。這方法一直在卡內(nèi)基梅隆大學沿襲下來,并在80年代于SOAR發(fā)展到高峰。基于邏輯不像艾倫·紐厄爾和赫伯特·西蒙,JOHNMCCARTHY認為機器不需要模擬人類的思想,而應(yīng)嘗試找到抽象推理和解決問題的本質(zhì),不管人們是否使用同樣的算法。他在斯坦福大學的實驗室致力于使用形式化邏輯解決多種問題,包括知識表示,智能規(guī)劃和機器學習.致力于邏輯方法的還有愛丁堡大學,而促成歐洲的其他地方開發(fā)編程語言PROLOG和邏輯編程科學.“反邏輯”斯坦福大學的研究者(如馬文·閔斯基和西摩爾·派普特)發(fā)現(xiàn)要解決計算機視覺和自然語言處理的困難問題,需要專門的方案-他們主張不存在簡單和通用原理(如邏輯)能夠達到所有的智能行為。 南平企業(yè)AIGC趨勢個人電腦和眾多技術(shù)雜志使計算機技術(shù)展現(xiàn)在人們面前.
短視頻策劃:AIGC可以利用計算機數(shù)據(jù)算法和圖像處理技術(shù),自動生成短視頻拍攝的腳本,生成對應(yīng)的參考樣片,也可以從大量的素材中選取的片段,并進行自動剪輯和編輯,以快速生成吸引人的短視頻內(nèi)容。廣告創(chuàng)意:AIGC可以利用計算機視覺和圖像識別算法,分析大量的圖像和視頻數(shù)據(jù),從中提取特征并生成創(chuàng)意性的廣告內(nèi)容。它可以根據(jù)目標受眾的喜好和需求,自動生成個性化的廣告,并優(yōu)化廣告投放效果。游戲設(shè)計:AIGC可以在游戲設(shè)計過程中發(fā)揮重要作用。它可以幫助游戲開發(fā)人員創(chuàng)建智能的虛擬角色和敵對AI,增強游戲的可玩性和挑戰(zhàn)性。同時,AIGC還可以分析玩家行為和反饋數(shù)據(jù),提供個性化的游戲體驗,優(yōu)化游戲關(guān)卡設(shè)計和平衡性。教育內(nèi)容:AIGC可以為教育領(lǐng)域帶來許多創(chuàng)新。它可以根據(jù)學生的學習情況和興趣,生成個性化的教學內(nèi)容和練習題,提供定制化的學習路徑和反饋。
VisionTransformer(ViT)2020年由谷歌團隊提出,將Transformer應(yīng)用至圖像分類任務(wù),此后Transformer開始在CV領(lǐng)域大放異彩。ViT將圖片分為14*14的patch,并對每個patch進行線性變換得到固定長度的向量送入Transformer,后續(xù)與標準的Transformer處理方式相同。以ViT為基礎(chǔ)衍生出了多重精良模型,如SwinTransformer,ViTAETransformer等。ViT通過將人類先驗經(jīng)驗知識引入網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計,獲得了更快的收斂速度、更低的計算代價、更多的特征尺度、更強的泛化能力,能夠更好地學習和編碼數(shù)據(jù)中蘊含的知識,正在成為視覺領(lǐng)域的基礎(chǔ)網(wǎng)絡(luò)架構(gòu)。以ViT為代替的視覺大模型賦予了AI感知、理解視覺數(shù)據(jù)的能力,助力AIGC發(fā)展。2、預(yù)訓(xùn)練大模型雖然過去各種模型層出不窮,但是生成的內(nèi)容偏簡單且質(zhì)量不高,遠不能夠滿足現(xiàn)實場景中靈活多變以高質(zhì)量內(nèi)容生成的要求。預(yù)訓(xùn)練大模型的出現(xiàn)使AIGC發(fā)生質(zhì)變,諸多問題得以解決。大模型在CV/NLP/多模態(tài)領(lǐng)域成果頗豐,并如下表的經(jīng)典模型。 1955年末,NEWELL和SIMON做了一個名為"邏輯航行家"(LOGIC THEORIST)的程序.
1956年夏季,以麥卡賽、明斯基、羅切斯特和申農(nóng)等為首的一批有遠見卓識的年輕科學家在一起聚會,共同研究和探討用機器模擬智能的一系列有關(guān)問題,并提出了“人工智能”這一術(shù)語,它標志著“人工智能”這門新興學科的正式誕生。IBM公司“深藍”電腦擊敗了人類的世界國際象棋旗艦更是人工智能技術(shù)的一個完美表現(xiàn)。從1956年正式提出人工智能學科算起,50多年來,取得長足的發(fā)展,成為一門普遍的交叉和前沿科學??偟恼f來,人工智能的目的就是讓計算機這臺機器能夠像人一樣思考。如果希望做出一臺能夠思考的機器,那就必須知道什么是思考,更進一步講就是什么是智慧。什么樣的機器才是智慧的呢?科學家已經(jīng)作出了汽車、火車、飛機和收音機等等,它們模仿我們身體感官的功能,但是能不能模仿人類大腦的功能呢?我們也只知道這個裝在我們天靈蓋里面的東西是由數(shù)十億個神經(jīng)細胞組成的感官,我們對這個東西知之甚少,模仿它或許是天下困難的事情了。當計算機出現(xiàn)后,人類開始真正有了一個可以模擬人類思維的工具,在以后的歲月中,無數(shù)科學家為這個目標努力著。 但80年代對AI工業(yè)來說也不全是好年景.86-87年對AI系統(tǒng)的需求下降,業(yè)界損失了近5億美元.泉州bilibiliAIGC
它將每個問題都表示成一個樹形模型,然后選擇可能得到正確結(jié)論的那一枝來求解。泉州bilibiliAIGC
AIGC的中心技術(shù)有哪些?(1)變分自編碼(VariationalAutoencoder,VAE)變分自編碼器是深度生成模型中的一種,由Kingma等人在2014年提出,與傳統(tǒng)的自編碼器通過數(shù)值方式描述潛空間不同,它以概率方式對潛在空間進行觀察,在數(shù)據(jù)生成方面應(yīng)用價值較高。VAE分為兩部分,編碼器與解碼器。編碼器將原始高維輸入數(shù)據(jù)轉(zhuǎn)換為潛在空間的概率分布描述;解碼器從采樣的數(shù)據(jù)進行重建生成新數(shù)據(jù)。VAE模型(2)生成對抗網(wǎng)絡(luò)(GenerativeAdversarialNetworks,GAN)2014年IanGoodFellow提出了生成對抗網(wǎng)絡(luò),成為早期出名的生成模型。GAN使用零和博弈策略學習,在圖像生成中應(yīng)用普遍。以GAN為基礎(chǔ)產(chǎn)生了多種變體,如DCGAN,StytleGAN,CycleGAN等。GAN模型GAN包含兩個部分:生成器:學習生成合理的數(shù)據(jù)。對于圖像生成來說是給定一個向量,生成一張圖片。其生成的數(shù)據(jù)作為判別器的負樣本。判別器:判別輸入是生成數(shù)據(jù)還是真實數(shù)據(jù)。網(wǎng)絡(luò)輸出越接近于0,生成數(shù)據(jù)可能性越大;反之,真實數(shù)據(jù)可能性越大。 泉州bilibiliAIGC