武漢第三方軟件評測單位

來源: 發(fā)布時間:2025-04-16

    optimizer)采用的是adagrad,batch_size是40。深度神經(jīng)網(wǎng)絡(luò)模型訓(xùn)練基本都是基于梯度下降的,尋找函數(shù)值下降速度**快的方向,沿著下降方向迭代,迅速到達(dá)局部**優(yōu)解的過程就是梯度下降的過程。使用訓(xùn)練集中的全部樣本訓(xùn)練一次就是一個epoch,整個訓(xùn)練集被使用的總次數(shù)就是epoch的值。epoch值的變化會影響深度神經(jīng)網(wǎng)絡(luò)的權(quán)重值的更新次數(shù)。本次實驗使用了80%的樣本訓(xùn)練,20%的樣本驗證,訓(xùn)練50個迭代以便于找到較優(yōu)的epoch值。隨著迭代數(shù)的增加,前端融合模型的準(zhǔn)確率變化曲線如圖5所示,模型的對數(shù)損失變化曲線如圖6所示。從圖5和圖6可以看出,當(dāng)epoch值從0增加到5過程中,模型的驗證準(zhǔn)確率和驗證對數(shù)損失有一定程度的波動;當(dāng)epoch值從5到50的過程中,前端融合模型的訓(xùn)練準(zhǔn)確率和驗證準(zhǔn)確率基本不變,訓(xùn)練和驗證對數(shù)損失基本不變;綜合分析圖5和圖6的準(zhǔn)確率和對數(shù)損失變化曲線,選取epoch的較優(yōu)值為30。確定模型的訓(xùn)練迭代數(shù)為30后,進(jìn)行了10折交叉驗證實驗。前端融合模型的10折交叉驗證的準(zhǔn)確率是%,對數(shù)損失是,混淆矩陣如圖7所示,規(guī)范化后的混淆矩陣如圖8所示。前端融合模型的roc曲線如圖9所示,該曲線反映的是隨著檢測閾值變化下檢測率與誤報率之間的關(guān)系曲線。用戶體驗測評中界面交互評分低于同類產(chǎn)品均值15.6%。武漢第三方軟件評測單位

武漢第三方軟件評測單位,測評

    圖2是后端融合方法的流程圖。圖3是中間融合方法的流程圖。圖4是前端融合模型的架構(gòu)圖。圖5是前端融合模型的準(zhǔn)確率變化曲線圖。圖6是前端融合模型的對數(shù)損失變化曲線圖。圖7是前端融合模型的檢測混淆矩陣示意圖。圖8是規(guī)范化前端融合模型的檢測混淆矩陣示意圖。圖9是前端融合模型的roc曲線圖。圖10是后端融合模型的架構(gòu)圖。圖11是后端融合模型的準(zhǔn)確率變化曲線圖。圖12是后端融合模型的對數(shù)損失變化曲線圖。圖13是后端融合模型的檢測混淆矩陣示意圖。圖14是規(guī)范化后端融合模型的檢測混淆矩陣示意圖。圖15是后端融合模型的roc曲線圖。圖16是中間融合模型的架構(gòu)圖。圖17是中間融合模型的準(zhǔn)確率變化曲線圖。圖18是中間融合模型的對數(shù)損失變化曲線圖。圖19是中間融合模型的檢測混淆矩陣示意圖。圖20是規(guī)范化中間融合模型的檢測混淆矩陣示意圖。圖21是中間融合模型的roc曲線圖。具體實施方式下面將結(jié)合本發(fā)明實施例中的附圖,對本發(fā)明實施例中的技術(shù)方案進(jìn)行清楚、完整地描述,顯然,所描述的實施例**是本發(fā)明一部分實施例,而不是全部的實施例。基于本發(fā)明中的實施例,本領(lǐng)域普通技術(shù)人員在沒有做出創(chuàng)造性勞動前提下所獲得的所有其他實施例,都屬于本發(fā)明保護(hù)的范圍。app第三方測試平臺能耗評估顯示后臺服務(wù)耗電量超出行業(yè)基準(zhǔn)值42%。

武漢第三方軟件評測單位,測評

    坐標(biāo)點(0,1)**一個完美的分類器,它將所有的樣本都正確分類。roc曲線越接近左上角,該分類器的性能越好。從圖9可以看出,該方案的roc曲線非常接近左上角,性能較優(yōu)。另外,前端融合模型的auc值為。(5)后端融合后端融合的架構(gòu)如圖10所示,后端融合方式用三種模態(tài)的特征分別訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型,然后進(jìn)行決策融合,隱藏層的***函數(shù)為relu,輸出層的***函數(shù)是sigmoid,中間使用dropout層進(jìn)行正則化,防止過擬合,優(yōu)化器(optimizer)采用的是adagrad,batch_size是40。本次實驗使用了80%的樣本訓(xùn)練,20%的樣本驗證,訓(xùn)練50個迭代以便于找到較優(yōu)的epoch值。隨著迭代數(shù)的增加,后端融合模型的準(zhǔn)確率變化曲線如圖11所示,模型的對數(shù)損失變化曲線如圖12所示。從圖11和圖12可以看出,當(dāng)epoch值從0增加到5過程中,模型的訓(xùn)練準(zhǔn)確率和驗證準(zhǔn)確率快速提高,模型的訓(xùn)練對數(shù)損失和驗證對數(shù)損失快速減少;當(dāng)epoch值從5到50的過程中,前端融合模型的訓(xùn)練準(zhǔn)確率和驗證準(zhǔn)確率小幅提高,訓(xùn)練對數(shù)損失和驗證對數(shù)損失緩慢下降;綜合分析圖11和圖12的準(zhǔn)確率和對數(shù)損失變化曲線,選取epoch的較優(yōu)值為40。確定模型的訓(xùn)練迭代數(shù)為40后,進(jìn)行了10折交叉驗證實驗。

    當(dāng)我們拿到一份第三方軟件測試報告的時候,我們可能會好奇第三方軟件檢測機(jī)構(gòu)是如何定義一份第三方軟件測試報告的費用呢,為何價格會存在一些差異,如何找到高性價比的第三方軟件測試機(jī)構(gòu)來出具第三方軟件檢測報告呢。我們可以從以下三個方面著手討論關(guān)于軟件檢測機(jī)構(gòu)的第三方軟件測試報告費用的一些問題,對大家在選擇適合價格的軟件檢測機(jī)構(gòu),出具高性價比的軟件檢測報告有一定的幫助和參考意義。1、首先,軟件檢測機(jī)構(gòu)大小的關(guān)系,從資質(zhì)上來說,軟件檢測機(jī)構(gòu)的規(guī)模大小和資質(zhì)的有效性是沒有任何關(guān)系的。可能小型的軟件檢測機(jī)構(gòu),員工人數(shù)規(guī)模會小一點,但是出具的CMA或者CNAS第三方軟件檢測報告和大型機(jī)構(gòu)的效力是沒有區(qū)別的。但是,小機(jī)構(gòu)在人員數(shù)量,運營成本都會成本比較低,在這里其實是可以降低一份第三方軟件測試報告的部分費用,所以反過來說,小型軟件檢測機(jī)構(gòu)的價格可能更加具有競爭力。2、軟件檢測流程的關(guān)系,為何流程會和第三方軟件測試的費用有關(guān)系呢。因為,一個機(jī)構(gòu)的軟件檢測流程如果是高效率流轉(zhuǎn),那么在同等時間內(nèi),軟件檢測機(jī)構(gòu)可以更高效的對軟件測試報告進(jìn)行產(chǎn)出,相對來說,時間成本就會降低,提高測試報告的出具效率。網(wǎng)絡(luò)延遲測評顯示亞太地區(qū)響應(yīng)時間超歐盟2倍。

武漢第三方軟件評測單位,測評

    圖書目錄第1章軟件測試描述第2章常見的軟件測試方法第3章設(shè)計測試第4章程序分析技術(shù)第5章測試分析技術(shù)第6章測試自動化的優(yōu)越性第7章測試計劃與測試標(biāo)準(zhǔn)第8章介紹一種企業(yè)級測試工具第9章學(xué)習(xí)一種負(fù)載測試軟件第10章軟件測試的經(jīng)驗總結(jié)附錄A常見測試術(shù)語附錄B測試技術(shù)分類附錄C常見的編碼錯誤附錄D有關(guān)的測試網(wǎng)站參考文獻(xiàn)軟件測試技術(shù)圖書4書名:軟件測試技術(shù)第2版作者:徐芳層次:高職高專配套:電子課件出版社:機(jī)械工業(yè)出版社出版時間:2012-06-26ISBN:978-7-111-37884-6開本:16開定價:目錄第1章開始軟件測試工作第2章執(zhí)行系統(tǒng)測試第3章測試用例設(shè)計第4章測試工具應(yīng)用第5章測試技術(shù)與應(yīng)用第6章成為***的測試組長第7章測試文檔實例詞條圖冊更多圖冊。代碼簽名驗證確認(rèn)所有組件均經(jīng)過可信機(jī)構(gòu)認(rèn)證。沈陽軟件評測實驗室

策科技助力教育行業(yè):數(shù)字化教學(xué)的創(chuàng)新應(yīng)用 。武漢第三方軟件評測單位

    所述生成軟件樣本的dll和api信息特征視圖,是先統(tǒng)計所有類別已知的軟件樣本的pe可執(zhí)行文件引用的dll和api信息,從中選取引用頻率**高的多個dll和api信息;然后判斷當(dāng)前的軟件樣本的導(dǎo)入節(jié)里是否存在選擇出的某個引用頻率**高的dll和api信息,如存在,則將當(dāng)前軟件樣本的該dll或api信息以1表示,否則將其以0表示,從而對當(dāng)前軟件樣本的所有dll和api信息進(jìn)行表示形成當(dāng)前軟件樣本的dll和api信息特征視圖。進(jìn)一步的,所述生成軟件樣本的格式信息特征視圖,是從當(dāng)前軟件樣本的pe格式結(jié)構(gòu)信息中選取可能區(qū)分惡意軟件和良性軟件的pe格式結(jié)構(gòu)特征,形成當(dāng)前軟件樣本的格式信息特征視圖。進(jìn)一步的,所述從當(dāng)前軟件樣本的pe格式結(jié)構(gòu)信息中選取可能區(qū)分惡意軟件和良性軟件的pe格式結(jié)構(gòu)特征,是從當(dāng)前軟件樣本的pe格式結(jié)構(gòu)信息中確定存在特定格式異常的pe格式結(jié)構(gòu)特征以及存在明顯的統(tǒng)計差異的格式結(jié)構(gòu)特征;所述特定格式異常包括:(1)代碼從**后一節(jié)開始執(zhí)行,(2)節(jié)頭部可疑的屬性,(3)pe可選頭部有效尺寸的值不正確,(4)節(jié)之間的“間縫”,(5)可疑的代碼重定向,(6)可疑的代碼節(jié)名稱,(7)可疑的頭部***,(8)來自,(9)導(dǎo)入地址表被修改,(10)多個pe頭部,(11)可疑的重定位信息,。武漢第三方軟件評測單位

標(biāo)簽: 測評