軟件漏洞測試報告

來源: 發(fā)布時間:2025-04-11

    圖2是后端融合方法的流程圖。圖3是中間融合方法的流程圖。圖4是前端融合模型的架構(gòu)圖。圖5是前端融合模型的準確率變化曲線圖。圖6是前端融合模型的對數(shù)損失變化曲線圖。圖7是前端融合模型的檢測混淆矩陣示意圖。圖8是規(guī)范化前端融合模型的檢測混淆矩陣示意圖。圖9是前端融合模型的roc曲線圖。圖10是后端融合模型的架構(gòu)圖。圖11是后端融合模型的準確率變化曲線圖。圖12是后端融合模型的對數(shù)損失變化曲線圖。圖13是后端融合模型的檢測混淆矩陣示意圖。圖14是規(guī)范化后端融合模型的檢測混淆矩陣示意圖。圖15是后端融合模型的roc曲線圖。圖16是中間融合模型的架構(gòu)圖。圖17是中間融合模型的準確率變化曲線圖。圖18是中間融合模型的對數(shù)損失變化曲線圖。圖19是中間融合模型的檢測混淆矩陣示意圖。圖20是規(guī)范化中間融合模型的檢測混淆矩陣示意圖。圖21是中間融合模型的roc曲線圖。具體實施方式下面將結(jié)合本發(fā)明實施例中的附圖,對本發(fā)明實施例中的技術(shù)方案進行清楚、完整地描述,顯然,所描述的實施例**是本發(fā)明一部分實施例,而不是全部的實施例?;诒景l(fā)明中的實施例,本領(lǐng)域普通技術(shù)人員在沒有做出創(chuàng)造性勞動前提下所獲得的所有其他實施例,都屬于本發(fā)明保護的范圍。覆蓋軟件功能與性能的多維度檢測方案設(shè)計與實施!軟件漏洞測試報告

軟件漏洞測試報告,測評

    降低成本對每個階段都進行測試,包括文檔,便于控制項目過程缺點依賴文檔,沒有文檔的項目無法使用,復雜度很高,實踐需要很強的管理H模型把測試活動完全**出來,將測試準備和測試執(zhí)行體現(xiàn)出來測試準備-測試執(zhí)行就緒點其他流程----------設(shè)計等v模型適用于中小企業(yè)需求在開始必須明確,不適用變更需求w模型適用于中大企業(yè)包括文檔也需要測試(需求分析文檔概要設(shè)計文檔詳細設(shè)計文檔代碼文檔)測試和開發(fā)同步進行H模型對公司參與人員技能和溝通要求高測試階段單元測試-集成測試-系統(tǒng)測試-驗證測試是否覆蓋代碼白盒測試-黑盒測試-灰盒測試是否運行靜態(tài)測試-動態(tài)測試測試手段人工測試-自動化測試其他測試回歸測試-冒*測試功能測試一般功能測試-界面測試-易用性測試-安裝測試-兼容性測試性能測試穩(wěn)定性測試-負載測試-壓力測試-時間性能-空間性能負載測試確定在各種工作負載下,系統(tǒng)各項指標變化情況壓力測試:通過確定一個系統(tǒng)的剛好不能接受的性能點。獲得系統(tǒng)能夠提供的**大服務(wù)級別測試用例為特定的目的而設(shè)計的一組測試輸入,執(zhí)行條件和預期結(jié)果,以便測試是否滿足某個特定需求。通過大量的測試用例來檢測軟件的運行效果,它是指導測試工作進行的依據(jù)。軟件驗收檢測報告企業(yè)數(shù)據(jù)安全與合規(guī):艾策科技的最佳實踐。

軟件漏洞測試報告,測評

    本書內(nèi)容充實、實用性強,可作為高職高專院校計算機軟件軟件測試技術(shù)課程的教材,也可作為有關(guān)軟件測試的培訓教材,對從事軟件測試實際工作的相關(guān)技術(shù)人員也具有一定的參考價值。目錄前言第1章軟件測試基本知識第2章測試計劃第3章測試設(shè)計和開發(fā)第4章執(zhí)行測試第5章測試技術(shù)與應(yīng)用第6章軟件測試工具第7章測試文檔實例附錄IEEE模板參考文獻軟件測試技術(shù)圖書3基本信息書號:軟件測試技術(shù)7-113-07054作者:李慶義定價:出版日期:套系名稱:21世紀高校計算機應(yīng)用技術(shù)系列規(guī)劃教材出版單位:**鐵道出版社內(nèi)容簡介本書主要介紹軟件適用測試技術(shù)。內(nèi)容分為三部分,***部分為概念基礎(chǔ)、測試理論的背景及發(fā)展,簡要地分析了當前測試技術(shù)的現(xiàn)狀;第二部分介紹軟件測試的程序分析技術(shù)、測試技術(shù),軟件測試的方法和策略,分析了軟件業(yè)在測試方面的研究成果,并總結(jié)了測試的基本原則和一些好的實踐經(jīng)驗;第三部分介紹了兩種測試工具軟件——基于Windows的WinRunner和服務(wù)器負載測試軟件WAS。本書結(jié)合實際,從一些具體的實例出發(fā),介紹軟件測試的一些基本概念和方法,分析出軟件測試的基本理論知識,適用性比較強。

    幫助客戶提升內(nèi)部技術(shù)團隊能力。例如,某三甲醫(yī)院在采用艾策科技的醫(yī)療信息化系統(tǒng)檢測方案后,不僅系統(tǒng)漏洞率下降45%,其IT團隊的安全意識與應(yīng)急響應(yīng)能力也提升。技術(shù)創(chuàng)新未來方向艾策科技創(chuàng)始人兼CTO表示:“作為軟件檢測公司,我們始終將技術(shù)創(chuàng)新視為競爭力。未來,公司將重點投入AI算法優(yōu)化、邊緣計算檢測等前沿領(lǐng)域,為電力能源、政企單位等行業(yè)提供更高效、更智能的質(zhì)量保障服務(wù)?!鄙钲诎咝畔⒖萍加邢薰臼且患伊⒆阌诨浉郯拇鬄硡^(qū),依托信息技術(shù)產(chǎn)業(yè),面向全國客戶提供專業(yè)、可靠服務(wù)的第三方CMACNAS檢測機構(gòu)。在檢測服務(wù)過程中,公司始終堅持以客戶需求為本,秉承公平公正的第三方檢測要求,遵循國家檢測標準規(guī)范,確保檢測數(shù)據(jù)和結(jié)果準確可靠,運用前沿A人工智能技術(shù)提高檢測效率。我們追求創(chuàng)造優(yōu)異的社會價值,我們致力于打造公司成為第三方檢測行業(yè)的行業(yè)榜樣。壓力測試表明系統(tǒng)在5000并發(fā)用戶時響應(yīng)延遲激增300%。

軟件漏洞測試報告,測評

    每一種信息的來源或者形式,都可以稱為一種模態(tài)。例如,人有觸覺,聽覺,視覺,嗅覺。多模態(tài)機器學習旨在通過機器學習的方法實現(xiàn)處理和理解多源模態(tài)信息的能力。多模態(tài)學習從1970年代起步,經(jīng)歷了幾個發(fā)展階段,在2010年后***步入深度學習(deeplearning)階段。在某種意義上,深度學習可以被看作是允許我們“混合和匹配”不同模型以創(chuàng)建復雜的深度多模態(tài)模型。目前,多模態(tài)數(shù)據(jù)融合主要有三種融合方式:前端融合(early-fusion)即數(shù)據(jù)水平融合(data-levelfusion)、后端融合(late-fusion)即決策水平融合(decision-levelfusion)以及中間融合(intermediate-fusion)。前端融合將多個**的數(shù)據(jù)集融合成一個單一的特征向量空間,然后將其用作機器學習算法的輸入,訓練機器學習模型,如圖1所示。由于多模態(tài)數(shù)據(jù)的前端融合往往無法充分利用多個模態(tài)數(shù)據(jù)間的互補性,且前端融合的原始數(shù)據(jù)通常包含大量的冗余信息。因此,多模態(tài)前端融合方法常常與特征提取方法相結(jié)合以剔除冗余信息,基于領(lǐng)域經(jīng)驗從每個模態(tài)中提取更高等別的特征表示,或者應(yīng)用深度學習算法直接學習特征表示,然后在特性級別上進行融合。后端融合則是將不同模態(tài)數(shù)據(jù)分別訓練好的分類器輸出決策進行融合,如圖2所示。安全審計發(fā)現(xiàn)日志模塊存在敏感信息明文存儲缺陷。代碼安全審計費用怎么算的

5G 與物聯(lián)網(wǎng):深圳艾策的下一個技術(shù)前沿。軟件漏洞測試報告

    特征之間存在部分重疊,但特征類型間存在著互補,融合這些不同抽象層次的特征可更好的識別軟件的真正性質(zhì)。且惡意軟件通常偽造出和良性軟件相似的特征,逃避反**軟件的檢測,但惡意軟件很難同時偽造多個抽象層次的特征逃避檢測?;谠撚^點,本發(fā)明實施例提出一種基于多模態(tài)深度學習的惡意軟件檢測方法,以實現(xiàn)對惡意軟件的有效檢測,提取了三種模態(tài)的特征(dll和api信息、pe格式結(jié)構(gòu)信息和字節(jié)碼3-grams),提出了通過前端融合、后端融合和中間融合這三種融合方式集成三種模態(tài)的特征,有效提高惡意軟件檢測的準確率和魯棒性,具體步驟如下:步驟s1、提取軟件樣本的二進制可執(zhí)行文件的dll和api信息、pe格式結(jié)構(gòu)信息以及字節(jié)碼n-grams的特征表示,生成軟件樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖;統(tǒng)計當前軟件樣本的導入節(jié)中引用的dll和api,提取得到當前軟件樣本的二進制可執(zhí)行文件的dll和api信息的特征表示。對當前軟件樣本的二進制可執(zhí)行文件進行格式結(jié)構(gòu)解析,并按照格式規(guī)范提取**該軟件樣本的格式結(jié)構(gòu)信息,得到該軟件樣本的二進制可執(zhí)行文件的pe格式結(jié)構(gòu)信息的特征表示。軟件漏洞測試報告

標簽: 測評