那么SPI具體是如何檢測的呢?目前SPI領(lǐng)域中主要的檢查方法有激光檢査和條紋光檢查兩種。其中激光方法是用點激光實現(xiàn)的。由于點激光加CCD取像須有X、Y逐點擔(dān)的機構(gòu),并未明顯増加量測速度。為了增加量測速度,需將點激光改成掃描式線激光光線。這兩種是經(jīng)常用到的方法,此外還有360°輪廓測量理論、對映函數(shù)法測量原理( coordinate Mapping)、結(jié)構(gòu)光法( Structure Lighting)、雙鏡頭立體視覺法。但這些方法會受到速度的限制而無法被應(yīng)用到在線測試上,只適合單點的3D測量。SPI能查出在SMT加工過程中哪些不良?;葜菥躍PI檢測設(shè)備技術(shù)參數(shù)
在線3D-SPI(3D錫膏檢測機)在SMT生產(chǎn)中的作用當(dāng)今元件PCB的復(fù)雜程度,己經(jīng)超越人眼所能識別的能力。以往依靠人工目測對PCB質(zhì)量進(jìn)行檢查的方法,大多基于目檢人員的經(jīng)驗和數(shù)量程度,無法達(dá)到依據(jù)質(zhì)量標(biāo)準(zhǔn)進(jìn)行量化評估。由此,基于機器視覺的自動光學(xué)檢測系統(tǒng)逐漸的替代了人工目檢,并越來越較廣的應(yīng)用于SMT生產(chǎn)線的印刷后、貼片后、焊接后PCB外觀檢測。為何要對錫膏印刷環(huán)節(jié)進(jìn)行外觀檢測:眾所周知,在SMT所有工序中,錫膏印刷工藝所產(chǎn)生的錫膏印刷不良,直接導(dǎo)致了約74%的電路板組裝不良,還與13%的電路板組裝不良有間接關(guān)系。錫膏印刷工藝的好壞,很大程度上決定了SMT工藝的品質(zhì).另外,對于PLCC、GBA等焊點隱葳在本體下的元件,以及屏敝蓋下元件,使用爐后AOI不能檢測,需要使用X-RAY才能有效檢測;而對于細(xì)小的0201、01005等元件焊接后更是難以維修,所以需要在錫膏印刷環(huán)節(jié)就使用檢測設(shè)備對錫膏印刷的質(zhì)量進(jìn)行實時的檢測和控制。更進(jìn)一步地說,在錫膏印刷環(huán)節(jié)發(fā)現(xiàn)不良,能有限節(jié)約生產(chǎn)費用、提高生產(chǎn)效率。一旦在印刷后的PCB上發(fā)現(xiàn)不良,操作員可以立即進(jìn)行返修。產(chǎn)品不會在繼續(xù)流入后續(xù)工序,不再浪費貼片機和回流焊爐的生產(chǎn)效率,更避免了爐后修理的費用。韶關(guān)在線式SPI檢測設(shè)備值得推薦為什么要使用3D-SPI錫膏厚度檢測儀?
SPI在SMT行業(yè)中指的是錫膏檢測設(shè)備(Solder Paste Inspection)的英文簡稱。用于錫膏印刷后檢測錫膏的高度、體積、面積、短路和偏移量。其工作原理:錫膏檢查機增加了錫膏測厚的雷射裝置,所以SPI的工作原理與AOI類似,就是要先取一片拼板目檢沒有問題后讓機器拍照當(dāng)成標(biāo)準(zhǔn)樣品,后面的板子就依照首片板子的影像及資料來作為判斷根據(jù),這樣會有很多的誤判率,所以需要不斷的修改其參數(shù),直到誤判率降低到一定標(biāo)準(zhǔn),因此,使用SPI時,需要有工程師維護(hù)。
AOI檢測誤判的定義及存在原困、檢測誤判的定義及存在原困、檢測誤判的定義及存在原困誤判的三種理解及產(chǎn)生原因可以分為以下幾點:1、元件及焊點本來有發(fā)生不良的傾向,但處于允收范圍。如元件本來發(fā)生了偏移,但在允收范圍內(nèi);此類誤判主要是由于闕值設(shè)定過嚴(yán)造成的,也可能是其本身介于不良與良品標(biāo)準(zhǔn)之間,AOI與MV(人工目檢)確認(rèn)造成的偏差,此類誤判是可以通過調(diào)整及與MV協(xié)調(diào)標(biāo)準(zhǔn)來降低。2、元件及焊點無不良傾向,但由于DFM設(shè)計時未考慮AOI的可測性,而造成AOI判定良與否有一定的難度,為保證檢出效果,將引入一些誤判。如焊盤設(shè)計的過窄或過短,AOI進(jìn)行檢測時較難進(jìn)行很準(zhǔn)確的判定,此類情況所造成的誤判較難消除,除非改進(jìn)DFM或放棄此類元件的焊點不良檢測。3、由于AOI依靠反射光來進(jìn)行分析和判定,但有時光會受到一些隨機因素的干擾而造成誤判。如元件焊端有臟物或焊盤側(cè)的印制線有部分未完全進(jìn)行涂敷有部分裸露,從而造成搜索不良等。并且檢測項目越多,可能造成的誤報也會稍多。此類誤報屬隨機誤報,無法消除。SPI錫膏檢測機類似我們常見擺放于smt爐后AOI光學(xué)識別裝置,同樣利用光學(xué)影像來檢查品質(zhì)。
莫爾條紋技術(shù)特點:1874年,科學(xué)家瑞利將莫爾條紋圖案作為一種測試手段,根據(jù)條紋形態(tài)和評價光柵尺各線紋間的間距的均勻性,從而開創(chuàng)了莫爾測試技術(shù)。隨著光刻技術(shù)和光電子技術(shù)水平的提高,莫爾技術(shù)獲得極快的發(fā)展,在位移測試,數(shù)字控制,伺服跟蹤,運動控制等方面有了較廣的應(yīng)用。目前該技術(shù)應(yīng)用在SMT的錫膏精確測量中,有著很好的優(yōu)勢。莫爾條紋(即光柵)有兩個非常重要的特性:1).判向性:當(dāng)指示光柵對于固定不動主光柵左右移動時,莫爾條紋將沿著近于柵向的方向上移動,可以準(zhǔn)確判定光柵移動的方向。2).位移放大作用:當(dāng)指示光柵沿著與光柵刻度垂直方向移動一個光柵距D時,莫爾條紋移動一個條紋間距B,當(dāng)兩個等間距光柵之間的夾角θ較小時,指示光柵移動一個光距D,莫爾條紋就移動KD的距離。這樣就可以把肉眼無法的柵距位移變成了清晰可見的條紋位移,實驗了高靈敏的位移測量。這兩點技術(shù)應(yīng)用在SPI中,就體現(xiàn)了莫爾條紋技術(shù)測量的穩(wěn)定性和精細(xì)性。SMT錫膏的印刷是SMT制程中首道工序也是SMT生產(chǎn)工藝的重要環(huán)節(jié),錫膏印刷質(zhì)量直接影響焊接質(zhì)量。廣州在線式SPI檢測設(shè)備銷售公司
2、SPI檢測儀通過利用光學(xué)原理,經(jīng)過測量錫膏的厚度等參數(shù)來檢測和分析錫膏印刷的質(zhì)量來發(fā)現(xiàn)錫膏印刷缺陷。惠州精密SPI檢測設(shè)備技術(shù)參數(shù)
DLP結(jié)構(gòu)光投影儀在3DSPI/AOI領(lǐng)域的應(yīng)用1.SPI分類從檢測原理上來分SPI主要分為兩個大類,線激光掃描式與面結(jié)構(gòu)光柵PMP技術(shù)。1.1激光掃描式的SPI通過三角量測的原理計算出錫膏的高度。此技術(shù)因為原理比較簡單,技術(shù)比較成熟,但是因為其本身的技術(shù)局限性如激光的掃描寬度偏長,單次取樣,雜訊干擾等,所以比較多的運用在對精度與重復(fù)性要求不高的錫厚測試儀,桌上型SPI等。在此不做過多敘述。1.2結(jié)構(gòu)光柵型SPIPMP又稱PSP(PhaseShiftProfilometry)技術(shù)是一種基于正弦條紋投影和位相測量的光學(xué)三維面形測量技術(shù)。通過獲取全場條紋的空間信息與一個條紋周期內(nèi)相移條紋的時序信息,來完成物體三維信息的重建。由于其具有全場性、速度快、高精度、自動化程度高等特點,這種技術(shù)已在工業(yè)檢測、機器視覺、逆向工程等領(lǐng)域獲得廣泛應(yīng)用。目前大部分的在線SPI設(shè)備都已經(jīng)升級到此種技術(shù)。但是它采用的離散相移技術(shù)要求有精確的正弦結(jié)構(gòu)光柵與精確的相移,在實際系統(tǒng)中不可避免地存在著光柵圖像的非正弦化,相移誤差與隨機誤差,它將導(dǎo)致計算位相和重建面形的誤差。雖然已經(jīng)出現(xiàn)了不少算法能降低線性相移誤差,但要解決相移過程中的隨機相移誤差問題,還存在一定的困難?;葜菥躍PI檢測設(shè)備技術(shù)參數(shù)
深圳市和田古德自動化設(shè)備有限公司致力于機械及行業(yè)設(shè)備,以科技創(chuàng)新實現(xiàn)高質(zhì)量管理的追求。和田古德?lián)碛幸恢Ы?jīng)驗豐富、技術(shù)創(chuàng)新的專業(yè)研發(fā)團(tuán)隊,以高度的專注和執(zhí)著為客戶提供全自動錫膏印刷機,全自動高速點膠機,AOI,SPI。和田古德不斷開拓創(chuàng)新,追求出色,以技術(shù)為先導(dǎo),以產(chǎn)品為平臺,以應(yīng)用為重點,以服務(wù)為保證,不斷為客戶創(chuàng)造更高價值,提供更優(yōu)服務(wù)。和田古德始終關(guān)注機械及行業(yè)設(shè)備行業(yè)。滿足市場需求,提高產(chǎn)品價值,是我們前行的力量。